ON CHARACTERIZATIONS OF A CENTER GALOIS EXTENSION

GEORGE SZETO and LIANYONG XUE

(Received 16 June 1999)

ABSTRACT. Let B be a ring with 1, C the center of B, G a finite automorphism group of B, and B^G the set of elements in B fixed under each element in G. Then, it is shown that B is a center Galois extension of B^G (that is, C is a Galois algebra over C^G with Galois group $G|C \cong G$) if and only if the ideal of B generated by $\{c - g(c) \mid c \in C\}$ is B for each $g \neq 1$ in G. This generalizes the well known characterization of a commutative Galois extension C that C is a Galois extension of C^G with Galois group G if and only if the ideal generated by $\{c - g(c) \mid c \in C\}$ is C for each $g \neq 1$ in G. Some more characterizations of a center Galois extension B are also given.

Keywords and phrases. Galois extensions, center Galois extensions, central extensions, Galois central extensions, Azumaya algebras, separable extensions, H-separable extensions.

2000 Mathematics Subject Classification. Primary 16S30, 16W20.

1. Introduction. Let C be a commutative ring with 1, G a finite automorphism group of C and C^G the set of elements in C fixed under each element in G. It is well known that a commutative Galois extension C is characterized in terms of the ideals generated by $\{c - g(c) \mid c \in C\}$ for $g \neq 1$ in G, that is C is a Galois extension with Galois group G if and only if the ideal generated by $\{c - g(c) \mid c \in C\}$ is C for each $g \neq 1$ in G (see [3, Proposition 1.2, page 80]). A natural generalization of a commutative Galois extension is the notion of a center Galois extension, that is, a noncommutative ring B with a finite automorphism group G and center C is called a center Galois extension of B^G with Galois group G if C is a Galois extension of C^G with Galois group $G|C \cong G$. Ikehata (see [4, 5]) characterized a center Galois extension with a cyclic Galois group G of prime order in terms of a skew polynomial ring. Then, the present authors generalized the Ikehata characterization to center Galois extensions with Galois group G of any cyclic order [7] and to center Galois extensions with any finite Galois group G [8]. The purpose of the present paper is to generalize the above characterization of a commutative Galois extension to a center Galois extension. We shall show that B is a center Galois extension of B^G if and only if the ideal of B generated by $\{c - g(c) \mid c \in C\}$ is B for each $g \neq 1$ in G. A center Galois extension B is also equivalent to each of the following statements:

(i) B is a Galois central extension of B^G, that is, $B = B^G C$ which is G-Galois extension of B^G.

(ii) B is a Galois extension of B^G with a Galois system $\{b_i \in B, c_i \in C, i = 1, 2, \ldots, m\}$ for some integer m.

(iii) the ideal of the subring $B^G C$ generated by $\{c - g(c) \mid c \in C\}$ is $B^G C$ for each $g \neq 1$ in G.
2. Definitions and notations. Throughout this paper, B will represent a ring with 1, $G = \{g_1 = 1, g_2, \ldots, g_n\}$ an automorphism group of B of order n for some integer n, C the center of B, B^G the set of elements in B fixed under each element in G, and $B \ast G$ a skew group ring in which the multiplication is given by $gb = g(b)g$ for $b \in B$ and $g \in G$.

B is called a G-Galois extension of B^G if there exist elements $\{a_i, b_i \in B, i = 1, 2, \ldots, m\}$ for some integer m such that $\sum_{i=1}^{m} a_i g(b_i) = \delta_1$, such a set $\{a_i, b_i\}$ is called a G-Galois system for B. B is called a center Galois extension of B^G if C is a Galois algebra over C^G with Galois group $G|_C \cong G$. B is called a central extension of B^G if $B = B^G C$, and B is called a Galois central extension of B^G if $B = B^G C$ is a Galois extension of B^G with Galois group G.

Let A be a subring of a ring B with the same identity 1. We denote $V_B(A)$ the commutator subring of A in B. We call B a separable extension of A if there exist $\{a_i, b_i \in B, i = 1, 2, \ldots, m\}$ for some integer m such that $\sum a_i b_i = 1$, and $\sum b_i a_i \otimes b_i b$ for all $b \in B$ where \otimes is over A. B is called H-separable extension of A if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule. B is called centrally projective over A if B is a direct summand of a finite direct sum of A as a A-bimodule.

3. The characterizations. In this section, we denote $J_j^C = \{ c - g_j(c) \mid c \in C \}$. We shall show that B is a center Galois extension of B^G if and only if $B = B J_j^C$, the ideal of B generated by J_j^C, for each $g_j \neq 1$ in G. Some more characterizations of a center Galois extension B are also given. We begin with a lemma.

Lemma 3.1. If $B = B J_j^C$ for each $g_j \neq 1$ in G (that is, $j \neq 1$), then

1. B is a Galois extension of B^G with Galois group G and a Galois system $\{b_i \in B; c_i \in C, i = 1, 2, \ldots, m\}$ for some integer m.
2. B is a centrally projective over B^G.
3. $B \ast G$ is H-separable over B.
4. $V_B(C) = C$.

Proof. (1) Since $B = B J_j^C$ for each $j \neq 1$, there exist $\{b_i \in B, c_i \in C, i = 1, 2, \ldots, m\}$ for some integer m, $j = 2, 3, \ldots, n$ such that $\sum b_i (c_i - g_j(c_i)) = 1$. Therefore, $\sum_{i=1}^{m} b_i^{(j)} c_i^{(j)} = 1 + \sum_{i=1}^{m} b_i^{(j)} g_j(c_i^{(j)})$. Let $b_i^{(j+1)} = -\sum_{i=1}^{m} b_i^{(j)} g_j(c_i^{(j)})$ and $c_i^{(j+1)} = 1$. Then $\sum_{i=1}^{m} b_i^{(j)} c_i^{(j)} = 1$ and $\sum b_i^{(j)} g_j(c_i^{(j)}) = 0$. Let $b_{i_2, i_3, \ldots, i_n} = b_{i_2}^{(2)} b_{i_3}^{(3)} \cdots b_{i_n}^{(n)}$ and $c_{i_2, i_3, \ldots, i_n} = c_{i_2}^{(2)} c_{i_3}^{(3)} \cdots c_{i_n}^{(n)}$ for $i_2, i_3, \ldots, i_n \neq 1, 2, \ldots, m_j + 1$ and $j = 2, 3, \ldots, n$. Then

$$
\sum_{i_2=1}^{m_2} \sum_{i_3=1}^{m_3} \cdots \sum_{i_n=1}^{m_n} b_{i_2, i_3, \ldots, i_n} c_{i_2, i_3, \ldots, i_n} = \sum_{i_2=1}^{m_2} \sum_{i_3=1}^{m_3} \cdots \sum_{i_n=1}^{m_n} b_{i_2}^{(2)} b_{i_3}^{(3)} \cdots b_{i_n}^{(n)} c_{i_2}^{(2)} c_{i_3}^{(3)} \cdots c_{i_n}^{(n)}
= \sum_{i_2=1}^{m_2+1} \sum_{i_3=1}^{m_3+1} \cdots \sum_{i_n=1}^{m_n+1} b_{i_2}^{(2)} c_{i_2}^{(2)} b_{i_3}^{(3)} c_{i_3}^{(3)} \cdots b_{i_n}^{(n)} c_{i_n}^{(n)}
= \sum_{i_2=1}^{m_2} b_{i_2}^{(2)} \sum_{i_3=1}^{m_3} b_{i_3}^{(3)} c_{i_3}^{(3)} \cdots \sum_{i_n=1}^{m_n} b_{i_n}^{(n)} c_{i_n}^{(n)} = 1
$$

(3.1)
and for each \(j \neq 1 \)

\[
\sum_{i_2=1}^{m_2+1} \sum_{i_3=1}^{m_3+1} \cdots \sum_{i_n=1}^{m_n+1} b_{i_2,i_3,\ldots,i_n} g_j(c_{i_2,i_3,\ldots,i_n})
\]

\[
= \sum_{i_2=1}^{m_2+1} \sum_{i_3=1}^{m_3+1} \cdots \sum_{i_n=1}^{m_n+1} b_{i_2}^{(2)} b_{i_3}^{(3)} \cdots b_{i_n}^{(n)} g_j(c_{i_2}^{(2)} c_{i_3}^{(3)} \cdots c_{i_n}^{(n)})
\]

\[
= \sum_{i_2=1}^{m_2+1} \sum_{i_3=1}^{m_3+1} \cdots \sum_{i_n=1}^{m_n+1} b_{i_2}^{(2)} b_{i_3}^{(3)} \cdots b_{i_n}^{(n)} g_j(c_{i_2}^{(2)} g_j(c_{i_3}^{(3)}) \cdots g_j(c_{i_n}^{(n)}))
\]

\[
= \sum_{i_2=1}^{m_2+1} b_{i_2}^{(2)} g_j(c_{i_2}^{(2)}) \sum_{i_3=1}^{m_3+1} b_{i_3}^{(3)} g_j(c_{i_3}^{(3)}) \cdots \sum_{i_n=1}^{m_n+1} b_{i_n}^{(n)} g_j(c_{i_n}^{(n)}) = 0.
\]

Thus, \(\{b_{i_2,i_3,\ldots,i_n} \in B; c_{i_2,i_3,\ldots,i_n} \in C, i_j = 1,2,\ldots,m_j + 1 \text{ and } j = 2,3,\ldots,n \} \) is a Galois system for \(B \). This complete the proof of (1).

(2) By (1), \(B \) is a Galois extension of \(B^G \) with a Galois system \(\{b_i \in B, c_i \in C, i = 1,2,\ldots,m \} \) for some integer \(m \). Let \(f_i : B \to B^G \) given by \(f_i(b) = \sum_{j=1}^n g_j(c_i b) \) for all \(b \in B \), \(i = 1,2,\ldots,m \). Then it is easy to check that \(f_i \) is a homomorphism as \(B^G \)-bimodule and \(b = \sum_{i=1}^m b_i c_i b = \sum_{i=1}^m b_i g_j(c_i) g_j(b) = \sum_{i=1}^m b_i \sum_{j=1}^n g_j(c_i b) = \sum_{i=1}^m b_i f_i(b) \) for all \(b \in B \). Hence \(\{b_i; f_i, i = 1,2,\ldots,m \} \) is a dual bases for \(B \) as \(B^G \)-bimodule, and so \(B \) is finitely generated and projective as \(B^G \)-bimodule. Therefore, \(B \) is a direct summand of a finite direct sum of \(B^G \) as a \(B^G \)-bimodule. Thus \(B \) is centrally projective over \(B^G \).

(3) By (1), \(B \) is a Galois extension of \(B^G \) with Galois group \(G \). Hence \(B \ast G \cong \text{Hom}_{B^G}(B, B) \) [2, Theorem 1]. By (2), \(B \) is centrally projective over \(B^G \). Thus, \(B \ast G \cong \text{Hom}_{B^G}(B, B) \) is \(H \)-separable over \(B \) [6, Proposition 11].

(4) We first claim that \(V_{B \ast G}(C) = B \). Clearly, \(B \subset V_{B \ast G}(C) \). Let \(\sum_{i=1}^m b_i g_j \in V_{B \ast G}(C) \) for some \(b_j \in B \). Then \(c(\sum_{j=1}^n b_j g_j) = (\sum_{j=1}^n b_j g_j) c \) for each \(c \in C \), so \(c b_j = b_j g_j(c) \), that is, \(b_j (c - g_j(c)) = 0 \) for each \(g_j \in G \) and \(c \in C \). Since \(B = B_j^{(C)} \) for each \(g_j \neq 1 \), there exist \(b_i^{(j)} \in B \) and \(c_i^{(j)} \in C \), \(i = 1,2,\ldots,m \) such that \(\sum_{i=1}^m b_i^{(j)} (c_i^{(j)} - g_j(c_i^{(j)})) = 1 \). Hence \(b_j = \sum_{i=1}^m b_i^{(j)} (c_i^{(j)} - g_j(c_i^{(j)})) b_j = \sum_{i=1}^m b_i^{(j)} b_j (c_i^{(j)} - g_j(c_i^{(j)})) = 0 \) for each \(g_j \neq 1 \). This implies that \(\sum_{i=1}^m b_j g_j = b_1 \in B \). Hence \(V_{B \ast G}(C) \subseteq B \), and so \(V_{B \ast G}(C) = B \). Therefore, \(V_{B \ast G}(B) \subset V_{B \ast G}(C) = B \). Thus \(V_{B \ast G}(B) = V_B(B) = C \).

We now show some characterizations of a center Galois extension \(B \).

Theorem 3.2. The following statements are equivalent.

1. \(B \) is a center Galois extension of \(B^G \).
2. \(B = B_j^{(C)} \) for each \(g_j \neq 1 \) in \(G \).
3. \(B \) is a Galois extension of \(B^G \) with a Galois system \(\{b_i \in B, c_i \in C, i = 1,2,\ldots,m \} \) for some integer \(m \).
4. \(B \) is a Galois central extension of \(B^G \).
5. \(B^G = B^G \ast C \) \(f_j^{(C)} \) for each \(g_j \neq 1 \) in \(G \).
PROOF. (1)⇒(2). By hypothesis, \(C \) is a Galois extension of \(C^G \) with Galois group \(G|_C \cong G \). Hence \(C = C_{g_j}^{(C)} \) for each \(g_j \neq 1 \) in \(G \) [3, Proposition 1.2, page 80]. Thus, \(B = BJ_j^{(C)} \) for each \(g_j \neq 1 \) in \(G \).

(2)⇒(1). Since \(B = BJ_j^{(C)} \) for each \(g_j \neq 1 \) in \(G \), \(B \ast G \) is \(H \)-separable over \(B \) by Lemma 3.1(3) and \(V_{B \ast G}(B) = C \) by Lemma 3.1(4). Thus \(C \) is a Galois extension of \(C^G \) with Galois group \(G|_C \cong G \) by [1, Proposition 4].

(1)⇒(3). This is Lemma 3.1(1).

(3)⇒(1). Since \(B \) is Galois extension of \(B^G \) with a Galois system \(\{b_i \in B, c_i \in C, i = 1, 2, \ldots, m \} \) for some integer \(m \), we have \(\sum_{i=1}^{m} b_i g_j(c_i) = \delta_{1,j} \). Hence \(\sum_{i=1}^{m} b_i (c_i - g_j(c_i)) = 1 \) for each \(g_j \neq 1 \) in \(G \). So for every \(b \in B, b = \sum_{i=1}^{m} b_i (c_i - g_j(c_i)) \in BJ_j^{(C)} \). Therefore, \(B = BJ_j^{(C)} \) for each \(g_i \neq 1 \) in \(G \). Thus, \(B \) is a center Galois extension of \(B^G \) by (2)⇒(1).

(1)⇒(4). Since \(C \) is a Galois algebra with Galois group \(G|_C \cong G \), \(B \) and \(B^G \) are Galois extensions of \(B^C \) with Galois group \(G|_B^C \cong G \). Noting that \(B^G \subset B \), we have \(B = B^G \), that is, \(B \) is a central extension of \(B^G \). But \(B \) is a Galois extension of \(B^G \), so \(B \) is a Galois central extension of \(B^G \).

(4)⇒(1). By hypothesis, \(B = B^G \) is a Galois extension of \(B^G \). Hence there exists a Galois system \(\{a_i; b_l \in B, i = 1, 2, \ldots, m \} \) for some integer \(m \) such that \(\sum_{i=1}^{m} a_i g_j(b_l) = \delta_{1,j} \). But \(B = B^G \), \(C \), so \(a_i = \sum_{k=1}^{n_{a_i}} b_k^{(a_i)} c_k^{(a_i)} \) and \(b_l = \sum_{i=1}^{n_{b_i}} b_l^{(b_i)} c_i^{(b_i)} \) for some \(a_i^{(a_i)}, b_l^{(b_i)} \) in \(B^G \) and \(c_k^{(a_i)}, c_i^{(b_i)} \) in \(C \), \(k = 1, 2, \ldots, n_{a_i}, l = 1, 2, \ldots, n_{b_i}, i = 1, 2, \ldots, m \). Therefore,

\[
\delta_{1,j} = \sum_{i=1}^{m} a_i g_j(b_l) = \sum_{i=1}^{m} \sum_{k=1}^{n_{a_i}} b_k^{(a_i)} c_k^{(a_i)} g_j \left(\sum_{l=1}^{n_{b_i}} b_l^{(b_i)} c_l^{(b_i)} \right) = \sum_{i=1}^{m} \sum_{k=1}^{n_{a_i}} \sum_{l=1}^{n_{b_i}} b_k^{(a_i)} c_k^{(a_i)} b_l^{(b_i)} g_j(c_l^{(b_i)}) = \sum_{i=1}^{m} \sum_{k=1}^{n_{a_i}} \sum_{l=1}^{n_{b_i}} (b_k^{(a_i)} c_k^{(a_i)} b_l^{(b_i)}) g_j(c_l^{(b_i)}).
\]

This shows that \(\{b_k^{(a_i)} b_l^{(b_i)} = b_k^{(a_i)} c_k^{(a_i)} b_l^{(b_i)} \in B; c_k^{(a_i)} b_l^{(b_i)} = c_l^{(b_i)} \in C, k = 1, 2, \ldots, n_{a_i}, l = 1, 2, \ldots, n_{b_i}, i = 1, 2, \ldots, m \} \) is a Galois system for \(B \). Thus, \(B \) is a center Galois extension of \(B^G \) by (3)⇒(1).

(1)⇒(5). Since \(B \) is a center Galois extension of \(B^G, B = BJ_j^{(C)} \) for each \(g_j \neq 1 \) in \(G \) by (1)⇒(2) and \(B = B^G \) by (1)⇒(4). Thus, \(B^G = BJ_j^{(C)} \) for each \(g_j \neq 1 \) in \(G \).

(5)⇒(1). Since \(B^G = BJ_j^{(C)} \) for each \(g_j \neq 1 \) in \(G \), \(B = BJ_j^{(C)} \) for each \(g_j \neq 1 \) in \(G \). Thus, \(B \) is a center Galois extension of \(B^G \) by (2)⇒(1).

The characterization of a commutative Galois extension \(C \) in terms of the ideals generated by \(\{c - g(c) \mid c \in C\} \) for \(g \neq 1 \) in \(G \) is an immediate consequence of Theorem 3.2.

Corollary 3.3. A commutative ring \(C \) is a Galois extension of \(C^G \) if and only if \(C = CJ_j^{(C)} \), the ideal generated by \(\{c - g(c) \mid c \in C\} \) is \(C \) for each \(g_j \neq 1 \) in \(G \).

Proof. Let \(B = C \) in Theorem 3.2. Then, the corollary is an immediate consequence of Theorem 3.2(2).

By Theorem 3.2, we derive several characterizations of a Galois centreal extension \(B \).
Corollary 3.4. If B is a central extension of B^G (that is, $B = B^G C$), then the following statements are equivalent.

1. B is a Galois extension of B^G.
2. B is a center Galois extension of B^G.
3. $B \star G$ is H-separable over B.
4. $B = CJ_j(B)$ for each $g_j \neq 1$ in G.
5. $B = BJ_j(B)$ for each $g_j \neq 1$ in G.

Proof. (1)\iff(2). This is given by (1)\iff(4) in Theorem 3.2.

(2)\iff(3). This is Lemma 3.1(3).

(3)\iff(1). Since $B \star G$ is H-separable over B, B is a Galois extension of B^G [1, Proposition 2].

Since $B = B^G C$ by hypothesis, it is easy to see that $J_j^B = B^G J_j(C)$ for each g_j in G. Thus, $B = CJ_j(B)$, $B = BJ_j(B)$, and $B = BJ_j(C)$ are equivalent. This implies that (2)\iff(4)\iff(5) by Theorem 3.2(2). \qed

We call a ring B the DeMeyer-Kanzaki Galois extension of B^G if B is an Azumaya C-algebra and B is a center Galois extension of B^G (for more about the DeMeyer-Kanzaki Galois extensions, see [2]). Clearly, the class of center Galois extensions is broader than the class of the DeMeyer-Kanzaki Galois extensions. We conclude the present paper with two examples. (1) The DeMeyer-Kanzaki Galois extension of B^G and (2) a center Galois extension of B^G, but not the DeMeyer-Kanzaki Galois extension of B^G.

Example 3.5. Let C be the field of complex numbers, that is, $C = \mathbb{R} + \mathbb{R} \sqrt{-1}$, where \mathbb{R} is the field of real numbers, $B = C[i,j,k]$ the quaternion algebra over C, and $G = \{1, g \mid g(c_1 + c_i i + c_j j + c_k k) = g(c_1) + g(c_i)i + g(c_j)j + g(c_k)k \}$ for each $b = c_1 + c_i i + c_j j + c_k k \in C[i,j,k]$ and $g(u + v \sqrt{-1}) = u - v \sqrt{-1}$ for each $c = u + v \sqrt{-1} \in C$. Then

1. The center of B is C.
2. B is an Azumaya C-algebra.
3. C is a Galois extension of C^G with Galois group $G_{|C} \cong G$ and a Galois system \[
\{a_1 = 1/\sqrt{2}, a_2 = (1/\sqrt{2}) \sqrt{-1}; b_1 = 1/\sqrt{2}, b_2 = -(1/\sqrt{2}) \sqrt{-1}\}.
\]
4. B is the DeMeyer-Kanzaki Galois extension of B^G by (2) and (3).
5. $B^G = \mathbb{R}[i,j,k]$.
6. $B = B^G C$, so B is a centeral extension of B^G.
7. $J_j^G = \mathbb{R} \sqrt{-1}$.
8. $B = BJ_j^G$ since $1 = -\sqrt{-1} \sqrt{-1} \in BJ_j^G$.
9. $J_j^G(B) = \mathbb{R} \sqrt{-1} + \mathbb{R} \sqrt{-1} i + \mathbb{R} \sqrt{-1} j + \mathbb{R} \sqrt{-1} k$.
10. $B = CJ_j^G(B)$.

Example 3.6. By replacing in Example 3.5 the field of complex numbers C with the ring $C = \mathbb{Z} \oplus \mathbb{Z}$ where \mathbb{Z} is the ring of integers, $g(a,b) = (b,a)$ for all $(a,b) \in C$, and $G = \{1, g \mid g(c_1 + c_i i + c_j j + c_k k) = g(c_1) + g(c_i)i + g(c_j)j + g(c_k)k \}$ for each $b = c_1 + c_i i + c_j j + c_k k \in B = C[i,j,k]$. Then

1. The center of B is C.
2. C is a Galois extension of C^G with Galois group $G_{|C} \cong G$ and a Galois system \[
\{a_1 = (1,0), a_2 = (0,1); b_1 = (1,0), b_2 = (0,1)\}.
\]
(3) B is not an Azumaya C-algebra (for $1/2 \not\in C$), and so B is not the DeMeyer-Kanzaki Galois extension of B^G.

(4) $C^G = \{(a,a) | a \in \mathbb{Z}\} \cong \mathbb{Z}$.

(5) $B^G = C^G[i,j,k]$.

(6) $B = B^G C$, so B is a central extension of B^G.

(7) $J^{(C)}_\theta = \{(a,-a) | a \in \mathbb{Z}\} = \mathbb{Z}(1,-1)$.

(8) $B = BJ^{(C)}_\theta$ since $1 = (1,1) = (1,-1)(1,-1) \in BJ^{(C)}_\theta$.

(9) $J^{(B)}_\theta = Z(1,-1) + Z(1,-1)i + Z(1,-1)j + Z(1,-1)k$.

(10) $B = CJ^{(B)}_\theta$.

REFERENCES

SZETO: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, ILLINOIS 61625, USA
E-mail address: szeto@bradley.bradley.edu

XUE: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, ILLINOIS 61625, USA
E-mail address: lxue@bradley.bradley.edu
Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Due Date</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland;
donal.oregan@nuigalway.ie

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Hindawi Publishing Corporation
http://www.hindawi.com