C-COMPACTNESS MODULO AN IDEAL

M. K. GUPTA AND T. NOIRI

Received 24 January 2006; Revised 30 March 2006; Accepted 4 April 2006

We investigate the concepts of quasi-H-closed modulo an ideal which generalizes quasi-H-closedness and C-compactness modulo an ideal which simultaneously generalizes C-compactness and compactness modulo an ideal. We obtain a characterization of maximal C-compactness modulo an ideal. Preservation of C-compactness modulo an ideal by functions is also investigated.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In the present paper, we consider a topological space equipped with an ideal, a theme that has been treated by Vaidyanathaswamy [15] and Kuratowski [6] in their classical texts. An ideal \mathcal{I} on a set X is a nonempty subset of $P(X)$, the power set of X, which is closed for subsets and finite unions. An ideal is also called a dual filter. $\{\phi\}$ and $P(X)$ are trivial examples of ideals. Some useful ideals are (i) \mathcal{I}_f, the ideal of all finite subsets of X, (ii) \mathcal{I}_c, the ideal of all countable subsets of X, (iii) \mathcal{I}_n, the ideal of all nowhere dense subsets in a topological space (X, τ), and (iv) \mathcal{I}_s, the set of all scattered sets in (X, τ). For an ideal \mathcal{I} on X and $A \subseteq X$, we denote the ideal $\{I \cap A : I \in \mathcal{I}\}$ by \mathcal{I}_A.

A topological space (X, τ) with an ideal \mathcal{I} on X is denoted by (X, τ, \mathcal{I}). For a subset $A \subseteq X$, $A^*(\mathcal{I}, \tau)$ (called the adherence of A modulo an ideal \mathcal{I}) or $A^*(\mathcal{I})$ or just A^* is the set $\{x \in X : A \cap U \notin \mathcal{I} \text{ for every open neighborhood } U \text{ of } x\}$. $A^*(\mathcal{I}, \tau)$ has been called the local function of A with respect to \mathcal{I} in [6]. It is easy to see that (i) for the ideal $\{\phi\}$, A^* is the closure of A, (ii) for the ideal $P(X)$, A^* is ϕ, and (iii) for ideal \mathcal{I}_f, A^* is the set of all ω-accumulation points of A. For general properties of the operator $*$, we refer the readers to [5, 14].

Observe that the operator $cl^*: P(X) \to P(X)$ defined by $cl^*(A) = A \cup A^*$ is a Kuratowski closure operator on X and hence generates a topology $\tau^*(\mathcal{I})$ or just τ^* on X finer than τ. As has already been observed, $\tau^*(\{\phi\}) = \tau$ and $\tau^*(P(X)) = \text{the discrete topology}$. A description of open sets in $\tau^*(\mathcal{I})$ as given in Vaidyanathaswamy [15] is given in the following.
2

Theorem 1.1. If τ is a topology and \mathcal{I} is an ideal, both defined on X, then

$$\beta = \beta(\tau, \mathcal{I}) = \{ V - I : V \in \tau, I \in \mathcal{I} \}$$

is a base for the topology $\tau^*(\mathcal{I})$ on X.

Ideals have been used frequently in the fields closely related to topology, such as real analysis, measure theory, and lattice theory. Some interesting illustrations of $\tau^*(\mathcal{I})$ are as follows [5].

1. If τ is the topology generated by the partition $\{ 2n - 1, 2n \} : n \in \mathbb{N} \}$ on the set \mathbb{N} of natural numbers, then $\tau^*(\mathcal{I})$ is the discrete topology.
2. If τ is the indiscrete topology on a set X, then $\tau^*(\mathcal{I})$ is the cofinite topology on X, and $\tau^*(\mathcal{I}_c)$ is the co-countable topology on X. If for a fixed point $p \in X$, \mathcal{I} denotes the ideal $\{ A \subset X : p \notin A \}$, then $\tau^*(\mathcal{I})$ is the particular point topology on X.
3. For any topological space (X, τ), $\tau^*(\mathcal{I}_n)$ is the τ^* topology of Njástad [10].
4. If τ is the usual topology on the real line \mathbb{R} and \mathcal{I} is the ideal of all subsets of \mathbb{R} of Lebesgue measure zero, then τ^*-Borel sets are precisely the Lebesgue measurable sets of \mathbb{R}.

2. **Quasi-H-closed modulo an ideal space**

The concept of compactness modulo an ideal was introduced by Newcomb [9] and has been studied among others by Rancin [11], and Hamlett and Janković [3]. A space (X, τ) is defined to be compact modulo an ideal \mathcal{I} on X or just (\mathcal{I}) compact space if for every open cover \mathcal{U} of X, there is a finite subfamily $\{ U_1, U_2, \ldots, U_n \}$ such that $X - \bigcup_{i=1}^n U_i \in \mathcal{I}$. In this section, we define quasi-H-closedness modulo an ideal and study some of its properties. In the process, we get some interesting characterizations of quasi-H-closed spaces.

Definition 2.1. Let (X, τ) be a topological space and \mathcal{I} an ideal on X. X is quasi-H-closed modulo \mathcal{I} or just (\mathcal{I}) QHC if for every open cover \mathcal{U} of X, there is a finite subfamily $\{ U_1, U_2, \ldots, U_n \}$ of \mathcal{U} such that $X - \bigcup_{i=1}^n \text{cl}(U_i) \in \mathcal{I}$. Such a subfamily is said to be proximate subcover modulo \mathcal{I} or just (\mathcal{I}) proximate subcover.

A subset A of a topological space (X, τ) is said to be preopen [8] if $A \subset \text{int}(\text{cl}(A))$. The collection of all preopen sets of a space (X, τ) is denoted by $\text{PO}(X)$. An ideal \mathcal{I} of subsets of a topological space (X, τ) is said to be codense [1] if the complement of each of its members is dense. Note that an ideal \mathcal{I} is codense if and only if $\mathcal{I} \cap \tau = \{ \phi \}$. Codense ideals are called τ-boundary ideals in [9]. An ideal \mathcal{I} of subsets of a topological space (X, τ) is said to be completely codense [1] if $\mathcal{I} \cap \text{PO}(X) = \{ \phi \}$. Obviously, every completely codense ideal is codense. Note that if (\mathbb{R}, τ) is the set \mathbb{R} of real numbers equipped with the usual topology τ, then \mathcal{I}_c is codense but not completely codense ideal. It is proved in [1] that an ideal \mathcal{I} is completely codense if and only if $\mathcal{I} \subset \mathcal{I}_c$.

From the discussion of Section 1, the proof of the following theorem is immediate.

Theorem 2.2. For a space (X, τ), the following are equivalent:

(a) (X, τ) is quasi-H-closed;
(b) \((X, \tau)\) is \((\{\phi\})\) QHC;
(c) \((X, \tau)\) is \((\mathcal{F})\) QHC;
(d) \((X, \tau)\) is \((\mathcal{F}_n)\) QHC;
(e) \((X, \tau)\) is \((\mathcal{F})\) QHC for every codense ideal \(\mathcal{F}\).

The significance of condition in (e) may be seen by considering the set \(\mathbb{R}\) of real numbers equipped with the usual topology \(\tau\). If \(A\) is a finite subset of \(\mathbb{R}\) and \(\mathcal{I}\) is the ideal of all subsets of \(\mathbb{R} - A\), then \((\mathbb{R}, \tau)\) is \((\mathcal{I})\) QHC, but not quasi-\(H\)-closed.

A family \(\mathcal{F}\) of subsets of \(X\) is said to have the finite-intersection property modulo an ideal \(\mathcal{I}\) on \(X\) or just \((\mathcal{I})\) FIP if the intersection of no finite subfamily of \(\mathcal{F}\) is a member of \(\mathcal{I}\).

Recall that a subset in a space is called regular open if it is the interior of its own closure. The complement of a regular open set is called regular closed. It is proved in [12] that for completely codense ideal \(\mathcal{F}\) on a space \((X, \tau)\), the collections of regular open sets of \((X, \tau)\) and \((X, \tau^*)\) are same. The following theorem contains a number of characterizations of \((\mathcal{F})\) QHC spaces. Since the proof is similar to that of a theorem in the next section, we omit it.

Theorem 2.3. For a space \((X, \tau)\) and an ideal \(\mathcal{F}\) on \(X\), the following are equivalent:

(a) \((X, \tau)\) is \((\mathcal{F})\) QHC;
(b) for each family \(\mathcal{F}\) of closed sets having empty intersection, there is a finite subfamily \(\{F_1, F_2, F_3, \ldots, F_n\}\) such that \(\bigcap_{i=1}^n \text{int}(F_i) \subseteq \mathcal{I}\);
(c) for each family \(\mathcal{F}\) of closed sets such that \(\{\text{int}(F) : F \in \mathcal{F}\}\) has \((\mathcal{I})\) FIP, one has \(\bigcap\{F : F \in \mathcal{F}\} \neq \phi\);
(d) every regular open cover has a finite \((\mathcal{F})\) proximate subcover;
(e) for each family \(\mathcal{F}\) of nonempty regular closed sets having empty intersection, there is a finite subfamily \(\{F_1, F_2, F_3, \ldots, F_n\}\) such that \(\bigcap_{i=1}^n \text{int}(F_i) \subseteq \mathcal{I}\);
(f) for each collection \(\mathcal{F}\) of nonempty regular closed sets such that \(\{\text{int}(F) : F \in \mathcal{F}\}\) has \((\mathcal{I})\) FIP, one has \(\bigcap\{F : F \in \mathcal{F}\} \neq \phi\);
(g) for each open filter base \(\mathcal{B}\) on \(P(X) - \mathcal{I}\), \(\bigcap\{\text{cl}(B) : B \in \mathcal{B}\} \neq \phi\);
(h) every open ultrafilter on \(P(X) - \mathcal{I}\) converges.

It follows from a result in [13] that \(\tau\) and \(\tau^*(\mathcal{F})\) have the same regular open sets, where \(\mathcal{F}\) is a completely codense ideal on \((X, \tau)\). In particular, if \(U \in \tau^*\), then \(\text{cl}(U) = \text{cl}^*(U)\). Using this observation along with the previous theorem, we have the following.

Theorem 2.4. Let \(\mathcal{I}\) be a completely codense ideal on a space \((X, \tau)\). Then \((X, \tau)\) is \((\mathcal{I})\) QHC if and only if \((X, \tau^*)\) is \((\mathcal{I})\) QHC.

Combining this result with Theorem 2.2, we have the following.

Corollary 2.5. Let \((X, \tau)\) be a space and \(\mathcal{F}\) a completely codense ideal on \(X\). Then the following are equivalent:

(a) \((X, \tau)\) is quasi-\(H\)-closed;
(b) \((X, \tau^*)\) is quasi-\(H\)-closed;
(c) \((X, \tau^a)\) is quasi-\(H\)-closed.

The last equivalence follows because \(\tau^a = \tau^*(\mathcal{F}_n)\), where \(\mathcal{F}_n\) is the ideal of nowhere dense sets in \(X\).
In this section, we generalize the concepts of C-compactness of Viglino [16] and compactness modulo an ideal due to Newcomb [9] and Rancin [11]. A space (X, τ) is said to be C-compact if for each closed set A and each τ-open covering \mathcal{U} of A, there exists a finite subfamily $\{U_1, U_2, U_3, \ldots, U_n\}$ such that $A \subseteq \bigcup_{i=1}^{n} \text{cl}(U_i)$.

Definition 3.1. Let (X, τ) be a topological space and \mathcal{I} an ideal on X. (X, τ) is said to be C-compact modulo \mathcal{I} or just C(\mathcal{I})-compact if for every closed set A and every τ-open cover \mathcal{U} of A, there is a finite subcollection $\{U_1, U_2, U_3, \ldots, U_n\}$ such that $A - \bigcup_{i=1}^{n} \text{cl}(U_i) \in \mathcal{I}$.

It follows from the definition that

- compact (\mathcal{I})-compact
- C-compact C(\mathcal{I})-compact
- quasi-H-closed (\mathcal{I})\text{QHC}

(3.1)

Also from the definition in Section 1, we have the following.

Theorem 3.2. For a space (X, τ), the following are equivalent:

(a) (X, τ) is C-compact;
(b) (X, τ) is C(ϕ)-compact;
(c) (X, τ) is C(\mathcal{I}_f)-compact.

Example 3.3. For n and m in the set N of positive integers, let Y denote the subset of the plane consisting of all points of the form $(1/n, 1/m)$ and the points of the form $(1/n, 0)$. Let $X = Y \cup \{\infty\}$. Topologize X as follows: let each point of the form $(1/n, 1/m)$ be open. Partition N into infinitely many infinite-equivalence classes, $\{Z_i\}_{i=1}^{\infty}$. Let a neighborhood system for the point $(1/i, 0)$ be composed of all sets of the form $G \cup F$, where

\[G = \left\{ \left(\frac{1}{i}, 0 \right) \right\} \cup \left\{ \left(\frac{1}{i}, \frac{1}{m} \right) : m \geq k \right\}, \]
\[F = \left\{ \left(\frac{1}{n}, \frac{1}{m} \right) : m \in Z_i, n \geq k \right\} \]

for some $k \in N$. Let a neighborhood system for the point ∞ be composed of sets of the form $X \setminus T$, where

\[T = \left\{ \left(\frac{1}{n}, 0 \right) : n \in N \right\} \cup \bigcup_{i=1}^{k} \left\{ \left(\frac{1}{i}, \frac{1}{m} \right) : m \in N \right\} \cup \left\{ \left(\frac{1}{n}, \frac{1}{m} \right) : m \in Z_i, n \in N \right\} \]

for some $k \in N$. It is shown in [16] that X is a C-compact space which is not compact. In view of Theorem 3.2, such a space is C(\mathcal{I}_f)-compact, but not (\mathcal{I}_f) compact.
Example 3.4. Let \(X = \mathbb{R}^+ \cup \{a\} \cup \{b\} \), where \(\mathbb{R}^+ \) denotes the set of nonnegative real numbers and \(a, b \) are two distinct points not in \(\mathbb{R}^+ \). Let \(W(a) = \{ V \subset X : V = \{a\} \cup \bigcup_{r=m}^\infty (2r, 2r+1) \} \), where \(m \) is a nonnegative integer, be a neighborhood system for the point \(a \). Let \(W(b) = \{ V \subset X : V = \{b\} \cup \bigcup_{r=m}^\infty (2r-1, 2r) \} \), where \(m \) is a nonnegative integer, be a neighborhood system for the point \(b \). Let \(R^+ \), with the usual topology, be imbedded in \(X \). Viglino [16] has shown that the space \(X \) is not \(C \)-compact. If \(A \) is a finite subset of \(X \), then \((X, \tau)\) is \(C(\mathcal{J}) \)-compact, where \(\mathcal{J} \) is the ideal of all subsets of \(X - A \).

In view of Examples 3.3 and 3.4, it is clear that the implications shown after Definition 3.1 are, in general, irreversible.

It is proved in [3] that if \((X, \tau)\) is quasi-\(H \)-closed and \(\mathcal{J} \) is an ideal such that \(\mathcal{J}_n \subset \mathcal{J} \), then \((X, \tau)\) is \((\mathcal{J})\) compact (and hence \(C(\mathcal{J}) \)-compact).

Next, if \(\{U_1, U_2, \ldots, U_n\} \) is a finite collection of open subsets such that \(X - \bigcup_{i=1}^n \text{cl}(U_i) \in \mathcal{J}_n \), then \(X - \bigcup_{i=1}^n \text{cl}(U_i) = \emptyset \) because \(\tau \cap \mathcal{J}_n = \{\emptyset\} \). But then \(\text{int}(\text{cl}(X - \bigcup_{i=1}^n U_i)) = X - \bigcup_{i=1}^n \text{cl}(U_i) = \emptyset \) implies that \(X - \bigcup_{i=1}^n U_i \in \mathcal{J}_n \). Therefore, a space \((X, \tau)\) is \((\mathcal{J}_n)\) compact if and only if it is \(C(\mathcal{J}_n) \)-compact. In view of this discussion, we have the following.

Theorem 3.5. For a space \((X, \tau)\), the following are equivalent:

a) \((X, \tau)\) is quasi-\(H \)-closed;

b) \((X, \tau)\) is \((\mathcal{J}_n)\) QHC;

c) \((X, \tau)\) is \(C(\mathcal{J}_n) \)-compact;

d) \((X, \tau)\) is \((\mathcal{J}_n)\) compact.

A space \((X, \tau)\) is said to be Baire if the intersection of every countable family of open sets in \((X, \tau)\) is dense. It is noted in [5] that a space \((X, \tau)\) is Baire if and only if \(\tau \cap \mathcal{J}_m = \{\emptyset\} \), where \(\mathcal{J}_m \) is the ideal of meager (first category) subsets of \((X, \tau)\). Thus, in view of the above theorem, a Baire space \((X, \tau)\) is \(C(\mathcal{J}_m) \)-compact if and only if it is quasi-\(H \)-closed.

We now give some characterizations of \(C(\mathcal{J}) \)-compact spaces.

Theorem 3.6. Let \((X, \tau)\) be a space and let \(\mathcal{J} \) be an ideal on \(X \). Then the following are equivalent:

a) \((X, \tau)\) is \(C(\mathcal{J}) \)-compact;

b) for each closed subset \(A \) of \(X \) and each family \(\mathcal{F} \) of closed subsets of \(X \) such that \(\bigcap \{F \cap A : F \in \mathcal{F}\} = \emptyset \), there exists a finite subfamily \(\{F_1, F_2, F_3, \ldots, F_n\} \) such that \(\bigcap \text{int}(F_i) \cap A \in \mathcal{J} \);

c) for each closed set \(A \) and each family \(\mathcal{F} \) of closed sets such that \(\{\text{int}(F) \cap A : F \in \mathcal{F}\} \) has \((\mathcal{J}) \) FIP, one has \(\bigcap \{F \cap A : F \in \mathcal{F}\} \neq \emptyset \);

d) for each closed set \(A \) and each regular open cover \(\mathcal{U} \) of \(A \), there exists a finite subcollection \(\{U_1, U_2, U_3, \ldots, U_n\} \) such that \(A - \bigcup_{i=1}^n \text{cl}(U_i) \in \mathcal{J} \);

e) for each closed set \(A \) and each family \(\mathcal{F} \) of regular closed sets such that \(\bigcap_1 F \cap A : F \in \mathcal{F}\} = \emptyset \), there is a finite subfamily \(\{F_1, F_2, F_3, \ldots, F_n\} \) such that \(\bigcap_{i=1}^n \text{int}(F_i) \cap A \in \mathcal{J} \);

f) for each closed set \(A \) and each family \(\mathcal{F} \) of regular closed sets such that \(\{\text{int}(F) \cap A : F \in \mathcal{F}\} \) has \((\mathcal{J}) \) FIP, one has \(\bigcap \{F \cap A : F \in \mathcal{F}\} \neq \emptyset \);

g) for each closed set \(A \), each open cover \(\mathcal{U} \) of \(X - A \) and each open neighborhood \(V \) of \(A \), there exists a finite subfamily \(\{U_1, U_2, U_3, \ldots, U_n\} \) of \(\mathcal{U} \) such that \(X - (V \cup (\bigcup_{i=1}^n \text{cl}(U_i))) \in \mathcal{J} \);
(h) for each closed set A and each open filter base \mathcal{B} on X such that $\{B \cap A : B \in \mathcal{B}\} \subset P(X) - \mathcal{I}$, one has $\bigcap \{\text{cl}(B) : B \in \mathcal{B}\} \cap A \neq \emptyset$.

Proof. (a) \Rightarrow (b). Let (X, τ) be $C(\mathcal{I})$-compact, A a closed subset, and \mathcal{F} a family of closed subsets with $\cap \{F \cap A : F \in \mathcal{F}\} = \emptyset$. Then $\{X - F : F \in \mathcal{F}\}$ is an open cover of A and hence admits a finite subfamily $\{X - F_i : i = 1, 2, \ldots, n\}$ such that $A - \bigcup_{i=1}^n \text{cl}(X - F_i) \in \mathcal{F}$. This set in \mathcal{I} is easily seen to be $\bigcap_{i=1}^n \{\text{int}(F_i) \cap A\}$.

(b) \Rightarrow (c). This is easy to be established.

(c) \Rightarrow (a). Let A be a closed subset, let \mathcal{U} be an open cover of A with the property that for no finite subfamily $\{U_1, U_2, U_3, \ldots, U_n\}$ of \mathcal{U}, one has $A - \bigcup_{i=1}^n \text{cl}(U_i) \in \mathcal{I}$. Then $\{X - U : U \in \mathcal{U}\}$ is a family of closed sets. Since
\[
\bigcap_{i=1}^n \{X - \text{cl}(U_i)\} \cap A = \bigcap_{i=1}^n \{A - \text{cl}(U_i)\} = A - \bigcup_{i=1}^n \text{cl}(U_i),
\]
the family $\{\text{int}(X - U) \cap A : U \in \mathcal{U}\}$ has \mathcal{I} FIP. By the hypothesis $\bigcap \{(X - U) \cap A : U \in \mathcal{U}\} \neq \emptyset$. But then $A - \bigcup \{U : U \in \mathcal{U}\} \neq \emptyset$, that is, \mathcal{U} is not a cover of A, a contradiction.

(d) \Rightarrow (a). Let A be a closed subset of X and \mathcal{U} an open cover of A. Then $\{\text{int}(\text{cl}(U)) : U \in \mathcal{U}\}$ is a regular open cover of A. Let $\{\text{int}(\text{cl}(U_i)) : i = 1, 2, \ldots, n\}$ be a finite subfamily such that $A - \bigcup_{i=1}^n \text{cl}(\text{int}(\text{cl}(U_i))) \in \mathcal{I}$. Since U_i is open and for each open set U, $\text{cl}(\text{int}(\text{cl}(U))) = \text{cl}(U)$, we have $A - \bigcup_{i=1}^n \text{cl}(U_i) \in \mathcal{I}$, which shows that X is $C(\mathcal{I})$-compact.

(a) \Rightarrow (d). This is obvious.

The proofs for (d) \Rightarrow (e) \Rightarrow (f) \Rightarrow (d) are parallel to (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a), respectively.

(a) \Rightarrow (g). Let A be a closed set, V an open neighborhood of A, and \mathcal{U} an open cover of $X - A$. Since $X - V \subset X - A$, \mathcal{U} is also an open cover of the closed set $X - V$.

Let $\{U_1, U_2, U_3, \ldots, U_n\}$ be a finite subcollection of \mathcal{U} such that $(X - V) - \bigcup_{i=1}^n \text{cl}(U_i) \in \mathcal{I}$. However, the last set is $X - (V \cup \{\bigcup_{i=1}^n \text{cl}(U_i)\})$.

(g) \Rightarrow (a). Let A be a closed subset of X and \mathcal{U} an open covering of A. If H denotes the union of members of \mathcal{U}, then $F = X - H$ is a closed set and $X - A$ is an open neighborhood of F. Also \mathcal{U} is an open cover of $X - F$. By hypothesis, there is a finite subcollection $\{U_1, U_2, U_3, \ldots, U_n\}$ of \mathcal{U} such that
\[
X \left((X - A) \cup \left\{\bigcup_{i=1}^n \text{cl}(U_i)\right\}\right) \in \mathcal{I}.
\]
However, this set in \mathcal{I} is nothing but $A - \bigcup_{i=1}^n \text{cl}(U_i)$.

(a) \Rightarrow (h). Suppose A is a closed set and \mathcal{B} is any open filter base on X with $\{B \cap A : B \in \mathcal{B}\} \subset P(X) - \mathcal{I}$. Suppose, if possible, $\bigcap \{\text{cl}(B) : B \in \mathcal{B}\} \cap A = \emptyset$. Then $\{X - \text{cl}(B) : B \in \mathcal{B}\}$ is an open cover of A. By the hypothesis, there exists a finite subfamily $\{X - \text{cl}(B_i) : i = 1, 2, 3, \ldots, n\}$ such that $A - \bigcup_{i=1}^n \text{cl}(X - \text{cl}(B_i)) \in \mathcal{I}$. However, this set is $A \cap (\bigcap_{i=1}^n \text{int(\text{cl}(B_i)))}$ and $A \cap (\bigcap_{i=1}^n B_i)$ is a subset of it. Therefore, $A \cap (\bigcap_{i=1}^n B_i) \in \mathcal{I}$. Since \mathcal{B} is a filter base, we have a $B \in \mathcal{B}$ such that $B \subset \bigcap_{i=1}^n B_i$. But then $A \cap B \in \mathcal{I}$ which contradicts the fact that $\{B \cap A : B \in \mathcal{B}\} \subset P(X) - \mathcal{I}$.

(h) \Rightarrow (a). Suppose that (X, τ) is not $C(\mathcal{I})$-compact. Then there exist a closed subset A of X and an open cover \mathcal{U} of A such that for any finite subfamily $\{U_1, U_2, U_3, \ldots, U_n\}$
of \(\mathcal{U} \), we have \(A - \bigcup_{i=1}^{n} \text{cl}(U_i) \notin \mathcal{F} \). We may assume that \(\mathcal{U} \) is closed under finite unions. Then the family \(\mathcal{B} = \{X - \text{cl}(U) : U \in \mathcal{U}\} \) is an open filter base on \(X \) such that \(\{B \cap A : B \in \mathcal{B}\} \subset P(A) - \mathcal{F} \). So, by the hypothesis, \(\bigcap \{\text{cl}(X - \text{cl}(U)) : U \in \mathcal{U}\} \cap A \neq \phi \). Let \(x \) be a point in the intersection. Then \(x \in A \) and \(x \in \text{cl}(X - \text{cl}(U)) = X - \text{int}(\text{cl}(U)) \subset X - U \) for each \(U \in \mathcal{U} \). But this contradicts the fact that \(\mathcal{U} \) is a cover of \(A \). Hence \((X, \tau)\) is \(C(\mathcal{F})\)-compact.

Next we characterize \(C(\mathcal{F})\)-compact spaces using some weaker forms of filter base convergence.

Definition 3.7. A filter base \(\mathcal{B} \) is said to be \((\mathcal{F}) \) adherent convergent if for every neighborhood \(G \) of the adherent set of \(\mathcal{B} \), there exists an element \(B \in \mathcal{B} \) such that \((X - G) \cap B \in \mathcal{J}\). Clearly, every adherent convergent filter base is \((\mathcal{F}) \) adherent convergent and a filter base is adherent convergent if and only if it is \((\{\phi\})\) adherent convergent.

Theorem 3.8. A space \((X, \tau)\) is \(C(\mathcal{F})\)-compact if and only if every open filter base on \(P(X) - \mathcal{F} \) is \((\mathcal{F}) \) adherent convergent.

Proof. Let \((X, \tau)\) be \(C(\mathcal{F})\)-compact and let \(\mathcal{B} \) be an open filter base on \(P(X) - \mathcal{F} \) with \(A \) as its adherent set. Let \(G \) be an open neighborhood of \(A \). Then \(A = \bigcap \{\text{cl}(B) : B \in \mathcal{B}\}, A \subset G \), and \(X - G \) is closed. Now \(\{X - \text{cl}(B) : B \in \mathcal{B}\} \) is an open cover of \(X - G \) and so by the hypothesis, it admits a finite subfamily \(\{X - \text{cl}(B_i) : i = 1, 2, 3, \ldots, n\} \) such that \((X - G) - \bigcup_{i=1}^{n} \text{cl}(X - \text{cl}(B_i)) \in \mathcal{F} \). But this implies \((X - G) \cap \bigcap_{i=1}^{n} \text{int}(\text{cl}(B_i)) \in \mathcal{F} \). However, \(B_i \subset \text{int}(\text{cl}(B_i)) \) implies \((X - G) \cap \bigcap_{i=1}^{n} B_i \in \mathcal{F} \). Since \(\mathcal{B} \) is a filter base and \(B_i \in \mathcal{B} \), there is a \(B \in \mathcal{B} \) such that \(B \subset \bigcap_{i=1}^{n} B_i \). But then \((X - G) \cap B \in \mathcal{F} \) is required.

Conversely, let \((X, \tau)\) be not \(C(\mathcal{F})\)-compact, and let \(A \) be a closed set, and \(\mathcal{U} \) an open cover of \(A \) such that for no finite subfamily \(\{U_1, U_2, U_3, \ldots, U_n\} \) of \(\mathcal{U} \), one has \(A - \bigcup_{i=1}^{n} \text{cl}(U_i) \notin \mathcal{F} \). Without loss of generality, we may assume that \(\mathcal{U} \) is closed for finite unions. Therefore, \(\mathcal{B} = \{X - \text{cl}(U) : U \in \mathcal{U}\} \) becomes an open filter base on \(P(X) - \mathcal{F} \). If \(x \) is an adherent point of \(\mathcal{B} \), that is, if \(x \in \bigcap \{\text{cl}(X - \text{cl}(U)) : U \in \mathcal{U}\} = X - \bigcup \{\text{int}(\text{cl}(U)) : U \in \mathcal{U}\} \), then \(x \notin A \), because \(\mathcal{U} \) is an open cover of \(A \) and for \(U \in \mathcal{U} \), \(U \subset \text{int}(\text{cl}(U)) \). Therefore, the adherent set of \(\mathcal{B} \) is contained in \(X - A \), which is an open set. By the hypothesis, there exists an element \(B \in \mathcal{B} \) such that \((X - (X - A)) \cap B \in \mathcal{I} \), that is, \(A \cap B \notin \mathcal{F} \), that is, \(A \cap (X - \text{cl}(U)) \notin \mathcal{F} \), that is, \(A - \text{cl}(U) \notin \mathcal{F} \) for some \(U \in \mathcal{U} \). This however contradicts our assumption. This completes the proof.

Herrington and Long [4] characterized \(C(\mathcal{F})\)-compact spaces using \(r\)-convergence of filters and nets. We obtain similar results for \(C(\mathcal{F})\)-compact spaces in the next definition.

Definition 3.9. Let \(X \) be a space, \(\phi \neq A \subset X \), and let \(\mathcal{B} \) be a filter base on \(A \). \(\mathcal{B} \) is said to \(r\)-converge to \(a \in A \) if for each open set \(V \) in \(X \) containing \(a \), there is \(B \in \mathcal{B} \) with \(B \subset \text{cl}(V) \). The filter base \(\mathcal{B} \) is said to \(r\)-accumulate to \(a \), if for each open set \(V \) containing \(a \), \(\text{cl}(V) \cap B \neq \phi \) for each \(B \in \mathcal{B} \).

Similarly, a net \(\varphi : D \to A \subset X \) is said to \(r\)-converge to \(a \in A \) if for each open set \(V \) containing \(a \), there is \(b \in D \) such that \(\varphi(c) \in \text{cl}(V) \) for all \(c \geq b \). \(\varphi \) is said to \(r\)-accumulate to \(a \) if for each open set \(V \) containing \(a \) and each \(b \in D \), there is \(c \in D \) with \(c \geq b \) and \(\varphi(c) \in \text{cl}(V) \).
It is known [4] that convergence (accumulation) for filter bases and nets implies r-convergence (r-accumulation), but the converse is not true.

Theorem 3.10. For a space \((X, \tau)\) and an ideal \(\mathfrak{I}\) on \(X\), the following are equivalent:

(a) \((X, \tau)\) is \(C(\mathfrak{I})\)-compact;

(b) for each closed set \(A\), each filter base \(\mathcal{B}\) on \(P(A) - \mathfrak{I}\) r-accumulates to some \(a \in A\);

(c) for each closed set \(A\), each maximal filter base \(\mathcal{M}\) on \(P(A) - \mathfrak{I}\) r-converges to some \(a \in A\);

(d) for each closed set \(A\), each net \(\varphi\) on \(P(A) - \mathfrak{I}\) r-accumulates to some \(a \in A\).

Proof. (a) \(\Rightarrow\) (b). Suppose there exist a closed set \(A\) and a filter base \(\mathcal{B}\) on \(P(A) - \mathfrak{I}\) which does not r-accumulate to any \(a \in A\). Then for each \(a \in A\), there exists an open set \(U(a)\) containing \(a\) and a \(B(a) \in \mathcal{B}\) such that \(B(a) \cap \text{cl}(U(a)) = \emptyset\). Then \(\{U(a) : a \in A\}\) is an open cover of the closed set \(A\). By (a), there exists a finite subcollection \(\{U(a_i) : i = 1, 2, 3, \ldots, n\}\) such that \(A - \bigcup_{i=1}^{n} \text{cl}(U(a_i)) \in \mathfrak{I}\). If \(B \in \mathcal{B}\) is such that \(B \subset \bigcap_{i=1}^{n} B(a_i)\), then \(B \cap (A - \bigcup_{i=1}^{n} \text{cl}(U(a_i))) \in \mathfrak{I}\), that is, \(B - \bigcup_{i=1}^{n} \text{cl}(U(a_i)) \in \mathfrak{I}\). But the later set is just \(B\), because \(B \subset B(a_i)\) and \(B(a_i) \cap \text{cl}(U(a_i)) = \emptyset\) for each \(i\). However, \(B \in \mathfrak{I}\) is a contradiction, because \(B \in \mathfrak{B}\) and \(\mathfrak{B} \subset P(A) - \mathfrak{I}\).

(b) \(\Leftrightarrow\) (c). This follows in view of parts (a), (b), and (c) of [4, Theorem 1].

(b) \(\Rightarrow\) (a). If possible, let \(X\) be not \(C(\mathfrak{I})\)-compact. Then by Theorem 3.6(f), there exist a closed set \(A\) and a collection \(\mathcal{F}\) of regular closed sets with the property that for every finite subcollection \(\{F_1, F_2, F_3, \ldots, F_n\}\), \(\bigcap_{i=1}^{n} \text{int}(F_i) \cap A \notin \mathfrak{I}\), but \(\bigcap\{F : F \in \mathcal{F}\} \cap A = \emptyset\). Now the collection of sets of the form \(\bigcap_{i=1}^{n} \text{int}(F_i) \cap A\) for all possible finite subfamilies \(\{F_1, F_2, F_3, \ldots, F_n\}\) of \(\mathcal{F}\) forms a filter base on \(P(A) - \mathfrak{I}\). By (b), this filter base r-accumulates to some \(a \in A\), that is, for each open set \(U(a)\) containing \(a\) and for each \(F \in \mathcal{F}\), \(\text{cl}(U(a)) \cap (\text{int}(F) \cap A) \neq \emptyset\). However, \(a \in \mathcal{A}\) and \(\mathcal{A} \cap \{F : F \in \mathcal{F}\} = \emptyset\) imply that there is some \(F = F(a) \in \mathcal{F}\) such that \(a \notin F(a)\). Then \(X \setminus F(a)\) is an open set containing \(a\) such that \(\text{cl}(X \setminus F(a)) \cap (\text{int}(F(a)) \cap A) = \emptyset\). This is a contradiction.

(b) \(\Leftrightarrow\) (d). This follows using standard arguments about nets and filters. \(\square\)

If in the above theorem, \(A\) is replaced by the whole space \(X\), we get the characterizations of \((\mathfrak{I})\) QHC spaces. If in addition we consider completely codense ideal \(\mathfrak{I}\), we get the characterizations of quasi-\(H\)-closed spaces.

4. \(C(\mathfrak{I})\)-compact spaces and functions

A function \(f : (X, \tau) \rightarrow (Y, \varsigma)\) is said to be \(\theta\)-continuous [2] at a point \(x \in X\) if for every open set \(V\) of \(Y\) containing \(f(x)\), there exists an open set \(U\) of \(X\) containing \(x\) such that \(f(\text{cl}(U)) \subseteq \text{cl}(V)\). A function \(f : (X, \tau) \rightarrow (Y, \varsigma)\) is said to be \(\theta\)-continuous if \(f\) is \(\theta\)-continuous for every \(x \in X\). The concept of \(\theta\)-continuity is weaker than that of continuity. An important property of \(C\)-compact spaces is that a continuous function from a \(C\)-compact space to a Hausdorff space is closed. We prove the following more general results.

Theorem 4.1. Let \(f : (X, \tau, \mathfrak{I}) \rightarrow (Y, \varsigma, \Theta)\) be a \(\theta\)-continuous function, \((X, \tau, \mathfrak{I})\) \(C(\mathfrak{I})\)-compact, \((Y, \varsigma, \Theta)\) Hausdorff, and \(f(\mathfrak{I}) \subseteq \Theta\). Then \(f(A)\) is \(\varsigma^{*}(\Theta)\)-closed for each closed set \(A\) of \(X\).
Proof. Let A be any closed set in X and $a \not\in f(A)$. For each $x \in A$, there exists a ς-open set V_x containing $y = f(x)$ such that $a \not\in \text{cl}(V_x)$. Now because f is θ-continuous, there exists an open set U_x containing x such that $f(\text{cl}(U_x)) \subseteq \text{cl}(V_y)$. The family $\{U_x : x \in A\}$ is an open cover of A. Therefore, there exists a finite subfamily $\{U_{x_i} : i = 1, 2, \ldots, n\}$ such that $A - \bigcup_{i=1}^{n} \text{cl}(U_{x_i}) \subseteq f(\emptyset)$. But then $f(A) - f(\bigcup_{i=1}^{n} \text{cl}(U_{x_i})) \subseteq f(\emptyset) \subseteq \emptyset$, that is, $f(A) - f(\bigcup_{i=1}^{n} \text{cl}(U_{x_i})) \subseteq f(\emptyset)$ because $f(\emptyset)$ is also an ideal. Hence $f(A) - \bigcup_{i=1}^{n} \text{cl}(V_{y_i}) \subseteq f(\emptyset)$. Now $a \not\in \text{cl}(V_{y_i})$ for any i implies that $a \in Y - \bigcup_{i=1}^{n} \text{cl}(V_{y_i})$ which is open in (Y, ς) and $(Y - \bigcup_{i=1}^{n} \text{cl}(V_{y_i})) \cap f(A) = f(A) - \bigcup_{i=1}^{n} \text{cl}(V_{y_i}) \subseteq f(\emptyset)$. Hence $a \not\in f(A)^*(\sigma, \emptyset)$. Thus $(f(A))^*(\sigma, \emptyset) \not\subseteq f(A)$ and so $f(A)$ is $\varsigma^*(\emptyset)$-closed. \qed

Corollary 4.2. Let $f : (X, \tau, \mathcal{F}) - (Y, \varsigma, \emptyset)$ be a continuous function, (X, τ, \mathcal{F}) $C(\mathcal{F})$-compact, (Y, ς) Hausdorff, and $f(\emptyset) \subseteq \emptyset$. Then $f(A)$ is $\varsigma^*(\emptyset)$-closed for each closed set A of X.

Theorem 4.3. Let $f : (X, \tau, \mathcal{F}) - (Y, \varsigma, \emptyset)$ be a continuous surjection, (X, τ, \mathcal{F}) $C(\mathcal{F})$-compact, and $f(\emptyset) \subseteq \emptyset$. Then $(Y, \varsigma, \emptyset)$ is $C(\emptyset)$-compact.

Proof. Let A be any closed subset of (Y, ς) and $\{V_a : a \in \Lambda\}$ any open cover of A by open sets in Y. Then $\{f^{-1}(V_a) : a \in \Lambda\}$ is an open cover of $f^{-1}(A)$ which is closed in X. Hence, by the hypothesis, there exists a finite subcollection $\{f^{-1}(V_a) : i = 1, 2, \ldots, n\}$ such that $f^{-1}(A) - \bigcup_{i=1}^{n} \text{cl}(f^{-1}(V_a)) \subseteq \emptyset$. Since f is continuous, $\text{cl}(f^{-1}(B)) \subseteq f^{-1}(\text{cl}(B))$ for every subset B of Y. Hence we have $f^{-1}(A) - \bigcup_{i=1}^{n} \text{cl}(f^{-1}(V_a)) = f^{-1}(A) - \bigcup_{i=1}^{n} \text{cl}(V_a) \subseteq f(\emptyset)$. Since f is surjective, $A - \bigcup_{i=1}^{n} \text{cl}(V_a) \subseteq f(\emptyset) \subseteq \emptyset$. Hence Y is $C(\emptyset)$-compact. \qed

Theorem 4.4. If the product space ΠX_a of nonempty family of topological spaces (X_a, τ_a) is $C(\mathcal{F})$-compact, then each (X_a, τ_a) is $C(\rho_a(\mathcal{F}))$-compact, where ρ_a is the projection map and \mathcal{F} is an ideal on ΠX_a.

Proof. This follows from Theorem 4.3. \qed

5. $C(\mathcal{F})$-compact spaces and subspaces

In this section, we introduce three types of $C(\mathcal{F})$-compact subsets and use them to obtain new characterizations of $C(\mathcal{F})$-compact spaces and a characterization of maximal $C(\mathcal{F})$-compact spaces.

Definition 5.1. Let (X, τ) be a space and \mathcal{F} an ideal on X. A subset Y of X is said to be $C(\mathcal{F})$-compact if the subspace (Y, τ_Y) is $C(\mathcal{F})$-compact.

Some useful results about such subspaces are contained in the following theorem. The proofs are easy to establish.

Theorem 5.2. Let (X, τ) be a space and \mathcal{F} an ideal on X. Then

(a) a subspace Y is $C(\mathcal{F})$-compact if and only if it is $C(\mathcal{F}_Y)$-compact;
(b) a clopen subspace of a $C(\mathcal{F})$-compact space is $C(\mathcal{F})$-compact;
(c) if Y is a regular closed subset of a $C(\mathcal{F})$-compact space (X, τ, \mathcal{F}) and \mathcal{F} is codense, then (Y, τ_Y) is quasi-H-closed;
(d) a finite union of $C(\mathcal{F})$-compact subspaces of X is $C(\mathcal{F})$-compact.
Definition 5.3. A subset Y of (X, τ) is said to be $C(\mathcal{F})$-compact relative to τ if every τ-open cover of every relatively closed subset A of Y has a finite subfamily whose τ-closures cover A except a set in \mathcal{F}.

Some useful properties of such spaces are contained in the following.

Theorem 5.4. Let (X, τ) be a space and \mathcal{F} an ideal on X. Then the following hold.

(a) A closed subspace of a $C(\mathcal{F})$-compact relative to τ subspace of (X, τ) is $C(\mathcal{F})$-compact relative to τ.

(b) If (X, τ) is Hausdorff and Y is $C(\mathcal{F})$-compact relative to τ, then Y is $\tau^*(\mathcal{F})$-closed.

(c) If Y is a $C(\mathcal{F})$-compact relative to τ subspace of (X, τ) and $f : (X, \tau) - (Z, \zeta)$ is a continuous bijection, then $f(Y)$ is $C(f(\mathcal{F}))$-compact relative to ζ.

(d) $C(\mathcal{F})$-compactness relative to τ is contractive.

The following characterization of $C(\mathcal{F})$-compact spaces is obtained using $C(\mathcal{F})$-compact relative to τ subspaces. The proof is easy.

Theorem 5.5. A space (X, τ) with an ideal \mathcal{F} is $C(\mathcal{F})$-compact if and only if every proper closed subset of X is $C(\mathcal{F})$-compact relative to τ.

Definition 5.6. A subset Y of a space (X, τ) is said to be closure $C(\mathcal{F})$-compact if for every τ-closed subset K of Y and every τ-open cover \mathcal{U} of $\text{cl}(K)$, there is a finite subcollection $\{U_1, U_2, U_3, \ldots, U_n\}$ of \mathcal{U} such that $K - \bigcup_{i=1}^{n} \text{cl}_{\tau}(U_i \cap Y) \in \mathcal{F}$.

Example 5.7. Since closed subsets of $C(\mathcal{F})$-compact spaces are not necessarily $C(\mathcal{F})$ QHC, a space (X, τ) which is $C(\mathcal{F})$-compact relative to τ may fail to be closure $C(\mathcal{F})$-compact. Moreover, $[0, 1]$ as a subspace of $[0, 1]$ is closure $C(\mathcal{F})$-compact with $\mathcal{F} = \{\phi\}$, but not $C(\mathcal{F})$-compact relative to the usual topology. Thus the concepts of $C(\mathcal{F})$-compact relative to τ and closure $C(\mathcal{F})$-compact are independent concepts.

We now have the following characterization of $C(\mathcal{F})$-compact spaces.

Theorem 5.8. A space (X, τ) is $C(\mathcal{F})$-compact for an ideal \mathcal{F} on X if and only if every open subset of X is closure $C(\mathcal{F})$-compact.

Proof. Let (X, τ) be $C(\mathcal{F})$-compact and Y an open subset of X. Let K be a τ_Y-closed subset of Y, and let \mathcal{U} be a τ-open cover of $\text{cl}(K)$. Then there exists a finite subcollection $\{U_1, U_2, U_3, \ldots, U_n\}$ of \mathcal{U} such that $\text{cl}(K) - \bigcup_{i=1}^{n} \text{cl}_{\tau}(U_i) \in \mathcal{F}$. Since Y is open, therefore, $\text{cl}_Y(U \cap Y) = \text{cl}(U) \cap Y$ and so, by hereditary property of \mathcal{F}, $K - \bigcup_{i=1}^{n} \text{cl}_{\tau}(U_i \cap Y) \in \mathcal{F}$. Thus Y is closure $C(\mathcal{F})$-compact.

Conversely, let all open subsets of X be closure $C(\mathcal{F})$-compact. Let K be a closed and \mathcal{U} an open cover of K. Choose a $U_0 \in \mathcal{U}$. Then $Y = X - \text{cl}(U_0)$ is an open subset of X and $K \cap Y$ is a τ_Y-closed subset of Y. Moreover, $\mathcal{U} - \{U_0\}$ is an open cover of $\text{cl}(K \cap Y)$. By the hypothesis, there exists a finite subcollection $\{U_1, U_2, U_3, \ldots, U_n\}$ of $\mathcal{U} - \{U_0\}$ such that $K \cap Y - \bigcup_{i=1}^{n} \text{cl}_{\tau}(U_i \cap Y) \in \mathcal{F}$. But then $K \cap Y - \bigcup_{i=1}^{n} \text{cl}(U_i) \in \mathcal{F}$ as $\text{cl}_{\tau}(U_i \cap Y) = \text{cl}(U_i) \cap Y$ and \mathcal{F} is hereditary. Therefore, $K - \bigcup_{i=0}^{n} \text{cl}(U_i) \in \mathcal{F}$. Hence (X, τ) is $C(\mathcal{F})$-compact.
Finally, we obtain a characterization of a maximal $C(\mathcal{F})$-compact space. Recall that a space (X, τ) with property P is said to be maximal P if there is no topology σ on X which has property P and is strictly finer than τ. For a topological space (X, τ) and a subset A of X, $\tau(A) = \{U \cup (V \cap A) : U, V \in \tau\}$ is a topology called simple extension [7] of τ by A. $\tau(A)$ is strictly finer than τ if and only if $A \notin \tau$.

Theorem 5.9. A topological space (X, τ) is maximal $C(\mathcal{F})$-compact if and only if for every subset A of X such that A is closure $C(\mathcal{F})$-compact and $X - A$ is $C(\mathcal{F})$-compact relative to τ, one has $A \in \tau$.

Proof. First we assume that (X, τ) is maximal $C(\mathcal{F})$-compact and that A is a subset of X satisfying the given conditions. First, we show that $(X, \tau(A))$ is $C(\mathcal{F})$-compact. Let K be a $\tau(A)$-closed subset of X. Then $K = K_1 \cup (K_2 \cap (X - A))$, where K_1 and K_2 are τ-closed sets. Let

$$\mathcal{U} = \{U_\alpha \cup (V_\alpha \cap A) : U_\alpha, V_\alpha \in \tau, \alpha \in \Delta\}$$

be a $\tau(A)$-open cover of K. Then $\nu = \{U_\alpha : \alpha \in \Delta\}$ is a τ-open cover of $K \cap (X - A) = (K_1 \cup K_2) \cap (X - A)$. Since, by assumption, $X - A$ is $C(\mathcal{F})$-compact relative to τ, we have a finite subcollection $\{U_{\alpha_1}, U_{\alpha_2}, U_{\alpha_3}, \ldots, U_{\alpha_n}\}$ of ν such that $K \cap (X - A) - \bigcup_{i=1}^n \text{cl}(U_{\alpha_i}) \in \mathcal{F}$. Since $\tau(A)$ is finer than τ, this subcollection is $\tau(A)$-open and $K \cap (X - A) - \bigcup_{i=1}^n \text{cl}_{\tau(A)}(U_{\alpha_i}) \in \mathcal{F}$. Next, $\mathcal{W} = \{U_\alpha \cup V_\alpha : \alpha \in \Delta\}$ is a τ-open cover of $\text{cl}(K \cap A) = \text{cl}(K_1 \cap A) = \text{cl}_{\tau(A)}(K_1 \cap A)$ and therefore by assumption on A, there exists a finite subcollection $\{U_{\beta_i} \cup V_{\beta_i} : i = 1, 2, \ldots, k\}$ of \mathcal{W} such that

$$K_1 \cap A - \bigcup_{i=1}^k \text{cl}_{\tau(A)}[(U_{\beta_i} \cup V_{\beta_i}) \cap A] \in \mathcal{F}. \quad (5.2)$$

However, τ_A, the restriction of τ to A, is nothing but $\tau(A) | A$, the restriction of $\tau(A)$ to A. Therefore,

$$K_1 \cap A - \bigcup_{i=1}^k \text{cl}_{\tau(A) | A}[(U_{\beta_i} \cup V_{\beta_i}) \cap A] \in \mathcal{F}. \quad (5.3)$$

Now $\{U_{\alpha_i} \cup (V_{\alpha_i} \cap A) : i = 1, 2, \ldots, n\} \cup \{U_{\beta_i} \cup (V_{\beta_i} \cap A) : i = 1, 2, \ldots, k\}$ is a finite $\tau(A)$ (\mathcal{F}) proximate cover of K which is a subcover of \mathcal{U}. Thus the topology $\tau(A)$ on X is also $C(\mathcal{F})$-compact. However, by the maximality of τ, we have $\tau(A) = \tau$. But then $A \in \tau$ as desired.

Conversely, let (X, τ) be not maximal $C(\mathcal{F})$-compact. Then there is a $C(\mathcal{F})$-compact topology σ on X which is strictly finer than τ. Let $A \in \sigma - \tau$. Then A is σ-closure $C(\mathcal{F})$-compact by Theorem 5.8. Since the property of closure $C(\mathcal{F})$-compact is carried over to coarser topologies, A is τ-closure $C(\mathcal{F})$-compact. Also $X - A$ is $C(\mathcal{F})$-compact relative to σ and hence $C(\mathcal{F})$-compact relative to τ. By the hypothesis, then $A \in \tau$, a contradiction.

Remark 5.10. The readers can generalize the above concepts in bitopological spaces to unify various types of compactness.
12 \(C \)-compactness modulo an ideal

References

M. K. Gupta: Department of Mathematics, Faculty of Science, Ch. Charan Singh University, Meerut-250004, India
E-mail address: mkgupta2002@hotmail.com

T. Noiri: 2949-1, Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken 869-5142, Japan
E-mail address: t.noiri@nifty.com
Special Issue on Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/ade/guidelines.html. Authors should follow the Advances in Difference Equations manuscript format described at the journal site http://www.hindawi.com/journals/ade/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>April 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>October 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor
Alberto Cabada, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; alberto.cabada@usc.es

Guest Editor
Victoria Otero-Espinar, Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; mvictoria.otero@usc.es