AN EXTENSION OF q-ZETA FUNCTION

T. KIM, L. C. JANG, and S. H. RIM

Received 27 February 2004

We will define the extension of q-Hurwitz zeta function due to Kim and Rim (2000) and study its properties. Finally, we lead to a useful new integral representation for the q-zeta function.

2000 Mathematics Subject Classification: 11B68, 11S40.

1. Introduction. Let $0 < q < 1$ and for any positive integer k, define its q-analogue $[k]_q = (1 - q^k)/(1 - q)$. Let \mathbb{C} be the field of complex numbers. The q-zeta function due to T. Kim was defined as

$$
\zeta_{q}(h)(s) = \sum_{n=1}^{\infty} \frac{q^{nh}}{[n]_q^s} + (q - 1) \frac{1}{1-s} \sum_{n=1}^{\infty} \frac{q^{nh}}{[n]_q^{s-1}}
$$

(1.1)

for any $s, h \in \mathbb{C}$ (cf. [3, 4]). This function can be considered on the spectral zeta function of the quantum group $SU_q(2)$ (cf. [2, 4]). Also, the q-zeta function $\zeta_{q}(h)(s)$ was studied at negative integers (see [4]). In this note, we lead to a useful new integral representation for the q-zeta function $\zeta_{q}(h)(s)$. Finally, we define the extension of q-Hurwitz zeta function, and study its properties.

2. q-zeta functions. For $q \in \mathbb{C}$ with $|q| < 1$, we define q-Bernoulli polynomials as follows:

$$
F_{q}(h)(t, x) = \sum_{n=0}^{\infty} \frac{\beta_{n,q}(x)}{n!} t^n
$$

$$
e^{(1/(1-q))t} \sum_{j=0}^{\infty} \frac{j+h}{[j+h]_q} (-1)^j q^j x \left(\frac{1}{1-q} \right)^j \frac{t^j}{j!}
$$

$$
= -t \sum_{l=0}^{\infty} q^{l(h+1)+x} e^{[l+x]_q t} + (1-q) h \sum_{l=0}^{\infty} q^{lh} e^{[l+x]_q t}
$$

(2.1)

for $h \in \mathbb{Z}, x \in \mathbb{C}$ (cf. [2, 4]). In the case $x = 0$, $\beta_{n,q}(x) = \beta_{n,q}(0)$ will be called the q-Bernoulli numbers (cf. [4]). By (2.1), we easily see that...
\[\beta_{n,q}^{(h)}(x) = \sum_{j=0}^{m} \binom{m}{j} [x]_{q}^{n-j} q^{jx} \beta_{j,q}^{(h)} \]

\[= \left(\frac{1}{1-q} \right)^{n} \sum_{j=0}^{n} \binom{n}{j} (-1)^{j} j + h \left[\frac{j + h}{q} \right] q^{jx} \quad \text{(cf. [2])}, \]

where \(\binom{n}{j} \) is a binomial coefficient.

Thus we note that

\[q^{h}(q^{\beta(h)} + 1)^{n} - \beta_{n,q}^{(h)} = \delta_{1,n}, \]

where we use the usual convention about replacing \((\beta(h))^{n} \) by \(\beta_{n,q}^{(h)} \) and \(\delta_{1,n} \) is the Kronecker symbol.

Example 2.1.

\[\beta_{0}^{(2)} = \frac{2}{[2]}, \quad \beta_{1}^{(2)} = -2q + \frac{1}{[2][3]}, \quad \beta_{2}^{(2)} = \frac{2q^{2}}{[3][4]}, \quad \beta_{3}^{(2)} = -\frac{q^{2}(q-1)(2[3]_{q} + q)}{[3][4][5]}, \quad \ldots \]

Let \(F_{q}^{(h)}(t) = \sum_{n=0}^{\infty} (\beta_{n,q}^{(h)}/n!)t^{n} \). Then we easily see that

\[F_{q}^{(h)}(x,t) = e^{[x]_{q} t} F_{q}^{(h)}(q^{x} t) \]

\[= -t \sum_{l=0}^{\infty} q^{l(h+1)+x} e^{[l+x]_{q} t} + (1-q)h \sum_{l=0}^{\infty} q^{lh} e^{[l+x]_{q} t}. \]

By (2.1) and (2.5), we note that

\[e^{-t} F_{q}^{(h)}(-qt) = qt \sum_{l=0}^{\infty} q^{l(h+1)} e^{-[l+1]_{q} t} + (1-q)h \sum_{l=0}^{\infty} q^{lh} e^{-[l+1]_{q} t}. \]

Thus we have

\[\frac{1}{\Gamma(s)} \int_{0}^{\infty} q^{h} t^{s-2} e^{-t} F_{q}^{(h)}(-qt) \, dt = \sum_{n=1}^{\infty} \frac{q^{nh}}{[n]_{q}^{s}} + (q-1) \frac{h+1-s}{1-s} \sum_{n=1}^{\infty} \frac{q^{nh}}{[n]_{q}^{s-1}}. \]

For \(h, s \in \mathbb{C} \), we define the \(q \)-zeta function as follows:

\[\zeta_{q}^{(h)}(s) = \sum_{n=1}^{\infty} \frac{q^{nh}}{[n]_{q}^{s}} + (q-1) \frac{1-s+h}{1-s} \sum_{n=1}^{\infty} \frac{q^{nh}}{[n]_{q}^{s-1}} \quad \text{(cf. [1, 4])}. \]

Note that \(\zeta_{q}^{(h)}(s) \) is a meromorphic function for \(\text{Re}(s) > 1 \).

Let \(\Gamma(s) \) be the gamma function and let \(\mathbb{Z} \) be the set of integers. By (2.3), (2.7), and (2.8), we obtain the following.

For \(h, n(>1) \in \mathbb{Z} \), we have

\[\zeta_{q}^{(h)}(1-n) = -\frac{q^{h}(q^{\beta(h)} + 1)^{n}}{n} = -\frac{\beta_{n,q}^{(h)}}{n}. \]
Let x be any nonzero positive real number. Then we define the q-analogue of Hurwitz zeta function as follows:

$$
\zeta_q^{(h)}(s,x) = \sum_{n=0}^{\infty} q^{nh} \frac{n^s}{[n+x]_q^s} + \frac{h+1-s}{1-s} \sum_{n=0}^{\infty} q^{nh} \frac{1}{[n+x]_q^{s-1}}
$$

(2.10)

for $s,h \in \mathbb{C}$. By (2.5) and (2.10), we easily see that

$$
\zeta_q^{(h)}(s,x) = \frac{1}{\Gamma(s)} \int_0^{\infty} t^{s-2} F_q^{(h)}(x,-t) \, dt.
$$

(2.11)

Thus we obtain the following: for $n \in \mathbb{N}, h \in \mathbb{Z}$, we have

$$
\zeta_q^{(h)}(1-n) = -\frac{\beta_q^{(h)}(x)}{n}
$$

(2.12)

because

$$
\zeta_q^{(h)}(s,x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \beta_n^{(h)}(x) \frac{1}{\Gamma(s)} \int_0^{\infty} t^{s+n-2} \, dt.
$$

(2.13)

ACKNOWLEDGMENTS. This research was supported by Kyungpook National University Research Team Fund, 2003. This paper was dedicated to Chung-Seo Park.

REFERENCES

T. Kim: Institute of Science Education, Kongju National University, Kongju 314-701, Korea

E-mail address: tkim@kongju.ac.kr

L. C. Jang: Department of Mathematics and Computer Science, Konkuk University, Choongju 380-701, Korea

E-mail address: leechae.jang@kku.ac.kr

S. H. Rim: Department of Mathematics Education, Kyungpook National University, Daegu 702-701, Korea

E-mail address: shrim@knu.ac.kr
Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be