DERIVATIONS ON BANACH ALGEBRAS

S. HEJAZIAN and S. TALEBI

Received 12 September 2002

Let D be a derivation on a Banach algebra; by using the operator D^2, we give necessary and sufficient conditions for the separating ideal of D to be nilpotent. We also introduce an ideal $M(D)$ and apply it to find out more equivalent conditions for the continuity of D and for nilpotency of its separating ideal.

2000 Mathematics Subject Classification: 46H40, 47B47.

1. Introduction. Let A be a Banach algebra. By a derivation on A, we mean a linear mapping $D : A \to A$, which satisfies $D(ab) = aD(b) + D(a)b$ for all a and b in A. The separating space of D is the set

$$S(D) = \{a \in A : \exists \{a_n\} \subset A; a_n \to 0, D(a_n) \to a\}.$$ \hfill (1.1)

The set $S(D)$ is a closed ideal of A which, by the closed-graph theorem, is zero if and only if D is continuous.

Definition 1.1. A closed ideal J of A is said to be a separating ideal if, for each sequence $\{a_n\}$ in A, there is a natural N such that

$$\overline{(Ja_n \cdots a_1)} = \overline{(Ja_N \cdots a_1)} \quad (n \geq N).$$ \hfill (1.2)

The separating space of a derivation on A is a separating ideal [2, Chapter 5]; it also satisfies the same property for the left products.

The following assertions are of the most famous conjectures about derivations on Banach algebras:

- (C1) every derivation on a Banach algebra has a nilpotent separating ideal;
- (C2) every derivation on a semiprime Banach algebra is continuous;
- (C3) every derivation on a prime Banach algebra is continuous;
- (C4) every derivation on a Banach algebra leaves each primitive ideal invariant.

Clearly, if (C1) is true, then the same for (C2) and (C3). Mathieu and Runde in [5] proved that (C1), (C2), and (C3) are equivalent. The conjecture (C4) is known as the noncommutative Singer-Wermer conjecture, and it has been proved in [1] that if each of the conjectures (C1), (C2), or (C3) hold, then (C4) is also true. The conjectures (C1), (C2), and (C3) are still open even if A is assumed
to be commutative, but (C4) is true in the commutative case, see [7]. These conjectures are also related to some other famous open problems; the reader is referred to [1, 3, 4, 5, 9] for more details.

In the next section, we deal with (C1), and although, for a derivation D on a Banach algebra, the operators D^n, $n = 2, 3, \ldots$, are more complicated, by considering D^2, we easily give some equivalent conditions for $S(D)$ to be nilpotent. As a consequence, we reprove some of the results in [8]. At the end of the next section, we introduce an ideal related to a derivation and apply it to obtain some equivalent conditions for continuity of D and for nilpotency of $S(D)$.

We recall that $S(D)$ is nilpotent if and only if $S(D) \cap R$ is nilpotent, see [1, Lemma 4.2].

2. The results. From now on, A is a Banach algebra, and R and L denote the Jacobson radical and the nil radical of A, respectively, (see [6, Chapter 4] for definitions). Note that D is a derivation on A, and $S(D)$ is the separating ideal of D. If B_i’s, $i = 1, 2, \ldots, n$, are subsets of A, then $B_1B_2 \cdots B_n$ denotes the linear span of the set \{ $b_1b_2 \cdots b_n : b_i \in B_i$, for $i = 1, 2, \ldots, n$ \}, and if all of B_i’s coincide with each other, we denote this set by B^n.

Theorem 2.1. Let J be a closed left ideal of A. Then, $S(D) \cap J$ is nilpotent if and only if $D^2 \mid \bigcap_{n=1}^{\infty} (S(D) \cap J)^n$ is continuous.

Proof. Suppose that D^2 is continuous on $\bigcap_{n=1}^{\infty} (S(D) \cap J)^n$. Consider a in $S(D) \cap J$, then for each $n \in \mathbb{N}$, $a^n \in (S(D) \cap J)^n$, and since $S(D)$ is a separating ideal, there exists $N \in \mathbb{N}$ such that

\[S(D)a^n = S(D)a^N \quad (n \geq N). \quad (2.1) \]

Hence, by the Mittag-Leffler theorem [2, Theorem A.1.25] and the fact that $S(D)a^n \subseteq (S(D) \cap J)^n$, we have

\[\overline{S(D)a^N} = \bigcap_{n=1}^{\infty} S(D)a^n = \bigcap_{n=1}^{\infty} (S(D) \cap J)^n. \quad (2.2) \]

Now, let \{ x_n \} $\subseteq A$, $x_n \rightarrow 0$, and $D(x_n) \rightarrow a^{N+1}$. Take $y_n = x_n a^{N+1}$, then $y_n \in S(D)a^N \subseteq \overline{S(D) \cap J}^n$, $y_n \rightarrow 0$, and $D(y_n) \rightarrow a^{2(N+1)}$, and by the hypothesis, $D^2(y_n) \rightarrow 0$ and $D^2(y_n^2) \rightarrow 0$. On the other hand,

\[D^2(y_n^2) = y_n D^2(y_n) + 2(Dy_n)^2 + D^2(y_n)y_n \rightarrow 2a^{4(N+1)}. \quad (2.3) \]

Therefore, $a^{4N+4} = 0$, that is, $S(D) \cap J$ is a nil and hence a nilpotent ideal by closedness [6, Theorem 4.4.11]. The converse is trivial. \[\square \]
Remark 2.2. (i) Note that in Theorem 2.1, we can replace \(J \) by a right ideal, see [2, Theorem 5.2.24].

(ii) The argument of Theorem 2.1 shows that if \(J \) is not assumed to be closed and if \(D^2 \) is continuous on \(\bigcap_{n=1}^{\infty} (S(D) \cap J)^n \), then \(S(D) \cap J \) will be a nil ideal.

Corollary 2.3. The set \(S(D) \) is nilpotent if and only if \(D^2 \big|_{\bigcap_{n=1}^{\infty} (S(D) \cap R)^n} \) is continuous.

Proof. If \(S(D) \) is nilpotent, then the result is obvious. Conversely, by Theorem 2.1, \(S(D) \cap R \) is nilpotent, and by [1, Lemma 4.2], \(S(D) \) is nilpotent.

Corollary 2.4. If \(\dim(\bigcap_{n=1}^{\infty} (S(D) \cap R)^n) < \infty \), then \(S(D) \) is nilpotent.

The assertions of the following theorem were proved by Villena in [8], see also [9, Theorem 4.4]. Using Theorem 2.1, we can reprove them in a different way.

Theorem 2.5. The derivation \(D \) is continuous if one of the following assertions hold:

(a) \(A \) is semiprime and \(\dim(R \cap (\bigcap_{n=1}^{\infty} A^n)) < \infty \);
(b) \(A \) is prime and \(\dim(\bigcap_{n=1}^{\infty} (aA \cap R)^n) < \infty \) for some \(a \in A \) with \(a^2 \neq 0 \);
(c) \(A \) is an integral domain and \(\dim(\bigcap_{n=1}^{\infty} (aA \cap R)^n) < \infty \) for some nonzero \(a \in A \).

Proof. (a) By Corollary 2.4, \(S(D) \) is nilpotent, and since \(A \) is semiprime, \(D \) is continuous.

(b) Without loss of generality, we may assume that \(A \) has an identity. By assumption, \(\bigcap_{n=1}^{\infty} (aA \cap R \cap S(D))^n \) is finite dimensional; thus, \(D^2 \) is continuous on this space, and by Remark 2.2(ii), \(aA \cap R \cap S(D) \) is a nil right ideal; therefore, \(a(S(D) \cap R) \) is a nil right ideal, and by [6, Theorem 4.4.11], \(a(S(D) \cap R) \subseteq L = \{0\} \). Thus, \(aAaS(D) \cap R) = \{0\} \), where \(aAa \) is the ideal generated by \(a \). Since \(a^2 \neq 0 \) and \(A \) is prime, it follows that \(S(D) \cap R = \{0\} \) and hence \(S(D) \subseteq L = \{0\} \).

(c) The same argument as in (b) shows that \(a(S(D) \cap R) = \{0\} \), and since \(A \) is an integral domain, \(S(D) \cap R = \{0\} \) and \(D \) is continuous.

In the sequel, we give other equivalent conditions for \(S(D) \) to be nilpotent, but first we introduce the set

\[
M(D) = \{ x \in S(D) \cap R : D(x) \in R \}.
\] (2.4)

Obviously, \(M(D) \) is an ideal of \(A \) and \((S(D) \cap R)^2 \subseteq M(D) \). The following theorems show that this ideal can help us to study the continuity of a derivation or nilpotency of its separating ideal.

Theorem 2.6. The derivation \(D \) is continuous if and only if \(M(D) = \{0\} \).
Proof. Clearly, if D is continuous, then $M(D) = \{0\}$. Conversely, let $M(D) = \{0\}$; then, $(S(D) \cap R)^2 = \{0\}$. Therefore, $(S(D) \cap R)$ and hence $S(D)$ is a nilpotent ideal. Therefore, $S(D) \subseteq I$; we also have $D(L) \subseteq L$ by [1, Lemma 4.1]; thus, $D(S(D)) \subseteq R$, that is, $S(D) \subseteq M(D) = \{0\}$ and D is continuous.

Theorem 2.7. The following assertions are equivalent:

(a) $S(D)$ is nilpotent;
(b) $M(D)$ is a nil ideal;
(c) $\bigcap_{n=1}^{\infty} M(D)^n = \{0\}$.

Proof. Clearly, (a) implies (b). Suppose that (b) holds, then $(S(D) \cap R)^2$ is a nil ideal; therefore, $S(D)$ is a nilpotent ideal and (a) holds. Now, if $S(D)$ is nilpotent, then $\bigcap_{n=1}^{\infty} (S(D))^n = \{0\}$ and this implies (c). Finally, if $\bigcap_{n=1}^{\infty} M(D)^n = \{0\}$, then by Theorem 2.1 and Remark 2.2 $M(D) = M(D) \cap S(D)$ is a nil ideal and (c) implies (b).

Acknowledgment. The authors would like to thank The Payame Noor University of Iran for the financial support.

References

S. Hejazian: Department of Mathematics, Ferdowsi University, Mashhad, Iran

E-mail address: hejazian@math.um.ac.ir

S. Talebi: Department of Mathematics, Payame Noor University, Mashhad, Iran

E-mail address: talebi@mshc.pnu.ac.ir
Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>July 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>October 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>January 1, 2010</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliani Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br