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1. Introduction and lemmas. LetX and Y be two subspaces of a real Hilbert

space H such that H = X⊕Y . Let f : H → R be of class C2 and denote by ∇f
and ∇2f the gradient and the Hessian of f , respectively. In 1975, Lazer et al.

[3] under the following conditions:

〈∇2f(u)h,h
〉≤−m1‖h‖2, m1 > 0, ∀h∈X, ∀u∈H;〈∇2f(u)k,k
〉≥m2‖k‖2, m2 > 0, ∀k∈ Y , ∀u∈H (1.1)

proved that f has a unique critical point, that is, there exists a unique v0 ∈H
such that ∇f(v0) = 0. Moreover, this critical point is characterized by the

equality

f
(
v0
)=max

x∈X
min
y∈Y

f (x+y). (1.2)

In [5], with the following conditions:

〈∇2f(x+y)h,h〉≤−β(‖x‖)‖h‖2,
∫∞

1
β(s)ds =∞, ∀x,h∈X, ∀y ∈ Y ;

〈∇2f(x+y)k,k〉≥α(‖y‖)‖k‖2,
∫∞

1
α(s)ds =∞, ∀x ∈X, ∀y,k∈ Y ,

(1.3)

where α(s) and β(s) are two continuous nonincreasing functions from [0,∞)
to (0,∞), it is proved that f has a unique critical point v0 such that f(v0) =
maxx∈X miny∈Y f (x+y). These results were generalized in [6] and especially

for a nonselfadjoint extension of the results of Lazer. This extension was ap-

plied in [6] to prove that if the following conditions hold:

N2 < γ1 ≤ γ2 < (N+1)2, γ1I ≤∇2G(u)≤ γ2I, (1.4)
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where N is a nonnegative integer and I is an n×n matrix, then the following

differential equations system has a unique 2π -periodic solution:

u′′(t)+Au′(t)+∇G(u)= e(t), (1.5)

where A is a constant symmetric matrix. System (1.5) is included in the follow-

ing nonconservative system (1.6), and assume the following:

u′′(t)+Au′(t)+∇G(u,t)= e(t). (1.6)

With the use of a nonvariational version of a max-min principle inspired by

[5, 6], in Section 2 we generalize these unique existence results of system (1.6)

to a more general case. To be more precise, we apply a min-max lemma to

the periodic boundary value problem of the nonconservative system (1.6) and

assume that the following conditions hold:

B1+α
(‖u‖)I ≤∇2G(u,t)≤ B2−β

(‖u‖)I,∫ +∞
1

min
{
α(s),β(s)

}
ds =+∞,

(1.7)

where u∈ Rn, B1 and B2 are two real symmetric matrices, and the eigenvalues

of B1 and B2 are N2
i and (Ni+1)2, i= 1, . . . ,n, respectively; here, Ni, i= 1, . . . ,n

are nonnegative integers and α(s) and β(s) are two positive nonincreasing

functions for s ∈ [0,∞).
In Section 3, we show with some examples that our main results extend the

results known so far.

We firstly employ the following lemma from [9].

Lemma 1.1 (see [9]). Assume that H is a Hilbert space. Let T ∈ C1(H,H),
T ′(u) ∈ Isom(H;H), for all u ∈H. Then, T is a global diffeomorphism onto H
if there exists a continuous map ω : R+ → R+\{0} such that

∫ +∞
1

ds
ω(s)

=+∞, ∥∥T ′(u)−1
∥∥≤ω(‖u‖). (1.8)

With this lemma, we can prove the following lemma.

Lemma 1.2 (see [4]). Let X and Y be two closed subspaces of a real Hilbert

space H, and H =X⊕Y . Suppose that T :H →H is a C1-mapping. If there exist

two continuous functions α : [0,∞)→ (0,∞) and β : [0,∞)→ (0,∞) such that

〈
T ′(u)x,x

〉≤−α(‖u‖)‖x‖2,〈
T ′(u)y,y

〉≥ β(‖u‖)‖y‖2,
(1.9)

〈
T ′(u)x,y

〉= 〈x,T ′(u)y〉 (1.10)
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for arbitrary u∈H, x ∈X, y ∈ Y , and

∫ +∞
1

min
{
α(s),β(s)

}
ds =+∞, (1.11)

then T is a diffeomorphism from H onto H.

The following lemma is required in the proof of Theorem 2.2.

Lemma 1.3 (see [2]). Let H be a vector space such that for subspaces Y and

Z , H = Z ⊕ Y . If Z is finite dimensional and X is a subspace of H such that

X∩Y = {0} and dimensionX = dimensionZ , then H =X⊕Y .

2. Unique existence. Assume that G(u,t) is continuous for (u,t) ∈ Rn×
[0,2π] and twice continuously differiable about u. Denote by ∇G(u,t) and

∇2G(u,t) the gradient and the Hessian of G(u,t), respectively. We will inves-

tigate the unique existence of periodic solutions for system (1.6).

Firstly, we introduce the following definition.

Definition 2.1. The real symmetric matrix A is called admissible with two

real symmetric matrices B1 and B2 if there exist orthogonal matrices P1 and P2

such that PT1 B1P1, PT2 B2P2, and PT1 AP2 are simultaneously diagonal matrices.

Theorem 2.2. If conditions (1.7) hold for all t ∈ [0,2π], allu∈ Rn, and forA
is admissible with the matrices B1 and B2, then there exists a unique 2π -periodic

solution to system (1.6).

Proof. BecauseA is admissible with the matrices B1 and B2, and conditions

(1.7) hold for all t ∈ [0,2π] and all u ∈ Rn, we can get orthogonal matrices

P1 = (a1,a2, . . . ,an), P2 = (b1,b2, . . . ,bn), PT1 B1P1 = diag(N2
1 , . . . ,N2

n), P
T
2 B2P2 =

diag((N1+1)2, . . . ,(Nn+1)2), and PT1 AP2 = diag(γ1,γ2, . . . ,γn). Clearly, ai and

bi are the eigenvectors of B1 and B2, respectively, corresponding to the eigen-

values N2
i and (Ni+1)2, which satisfy

aTi aj = bTi bj = δij, i,j = 1,2, . . . ,n, (2.1)

where δij = 0, i �= j; δij = 1, i= j. Define

V = {v(t)= (v1(t), . . . ,vn(t)
)T | vi(0)= vi(2π), i= 0,1, . . . ,n;

v(t) absolutely continuous and v′(t)∈ L2[0,2π]
}
,

(2.2)

and it is easy to see that V is a Hilbert space with the following inner product:

〈u,v〉 =
∫ 2π

0

[
u′T (t)v′(t)+uT(t)v(t)]dt. (2.3)
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Denote by ‖·‖V the norm induced by this inner product, and define subspaces

of V as follows:

X =

x(t)=

n∑
i=1

fi(t)ai | fi(t)= ci0+
Ni∑
m=1

(
cim cosmt+dim sinmt

)

;

Y =

y(t)=

n∑
i=1

gi(t)bi | gi(t)=
∞∑

m=Ni+1

(
pim cosmt+qim sinmt

)
;

Z =

z(t)=

n∑
i=1

hi(t)bi | hi(t)= pi0+
Ni∑
m=1

(
pim cosmt+qim sinmt

)

,

(2.4)

where Ni, i = 1, . . . ,n are as in (1.7) and cim, dim, pim, and qim are constants.

Obviously, V = Z⊕Y . Using the Riesz representation theorem, define a map-

ping T : V → V by

〈
T(u),v

〉=
∫ 2π

0

[
u′T (t)v′(t)−vT (t)Au′(t)−vT (t)∇G(u(t),t)]dt (2.5)

for arbitrary v ∈ V . We observe that T is defined implicitly. From (2.5) and the

fact that G is C2, it can be proved that T is a C1-mapping and that

〈
T ′(u)w,v

〉=
∫ 2π

0

[
w′Tv′(t)−vT (t)Aw′T (t)−vT (t)∇2G(u,t)w(t)

]
dt (2.6)

for all v(t),u(t),w(t) ∈ V . Again, from the Riesz representation theorem,

there exists an element d∈ V satisfying

〈d,v〉 = −
∫ 2π

0
vT (t)e(t)dt. (2.7)

It can be proved thatu is a 2π -periodic solution to (1.6) if and only ifu satisfies

the operator equation

T(u)= d. (2.8)

We will next show that T satisfies the conditions of Lemma 1.2. This will, in

turn, imply that (1.6) has a unique 2π -periodic solution. For any x ∈ X and

u∈ V , we have that

〈
T ′(u)x,x

〉=
∫ 2π

0

[
x′T (t)x′(t)−xT (t)Ax′(t)−xT (t)∇2G(u,t)x(t)

]
dt,

(2.9)

where

∫ 2π

0
x′T (t)x′(t)dt =

∫ 2π

0

n∑
i=1

f ′2i (t)dt ≤
n∑
i=1

N2
i

∫ 2π

0
f 2
i (t)dt;

∫ 2π

0
xT (t)Ax′(t)dt = 1

2
xT (t)Ax(t)|2π0 = 0.

(2.10)
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By (1.7), we have

∫ 2π

0
xT (t)∇2G(u,t)x(t)dt

≥
∫ 2π

0
xT (t)B1x(t)dt+α

(‖u‖V )
∫ 2π

0
xT (t)x(t)dt

=
∫ 2π

0

n∑
i=1

n∑
j=1

fi(t)fj(t)aTi B1aj dt+α
(‖u‖V )

∫ 2π

0
xT (t)x(t)dt

=
n∑
i=1

N2
i

∫ 2π

0
f 2
i (t)dt+α

(‖u‖V )
∫ 2π

0
xT (t)x(t)dt;

‖x‖2
V =

∫ 2π

0
xT (t)x(t)dt+

∫ 2π

0
x′T (t)x′(t)dt

≤ (M2+1
)∫ 2π

0
xT (t)x(t)dt,

(2.11)

where M =max1≤i≤n{Ni}, therefore

〈
T ′(u)x,x

〉≤−α
(‖u‖V )
M2+1

‖x‖2
V . (2.12)

Similarly, from

∫ 2π

0
y ′T (t)y ′(t)dt ≥

n∑
i=1

(
Ni+1

)2
∫ 2π

0
g2
i (t)dt,

−
∫ 2π

0
yT(t)∇2G(u,t)y(t)dt ≥−

∫ 2π

0
yT(t)B2y(t)dt

+β(‖u‖V )
∫ 2π

0
yT(t)y(t)dt,

(2.13)

we can get that for all y ∈ Y and all u∈ V ,

∫ 2π

0

{[
1+(M+1)2

][
y ′T (t)y ′(t)−yT(t)∇2G(u,t)y(t)

]

−β(‖u‖V )[y ′Ty ′(t)+yT(t)y(t)]}dt
= [1+(M+1)2−β(‖u‖V )]

∫ 2π

0
y ′T (t)y ′(t)dt

−
∫ 2π

0

[
1+(M+1)2

]
yT(t)∇2G(u,t)y(t)dt−β(‖u‖V )

∫ 2π

0
yT(t)y(t)dt

≥ [1+(M+1)2−β(‖u‖V )]
n∑
i=1

(
Ni+1

)2
∫ 2π

0
g2
i (t)dt

−
∫ 2π

0

[
1+(M+1)2

]
yT(t)B2y(t)dt+(M+1)2β

(‖u‖V )
∫ 2π

0
yT(t)y(t)dt
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= [1+(M+1)2−β(‖u‖V )]
n∑
i=1

(
Ni+1

)2
∫ 2π

0
g2
i (t)dt

−[1+(M+1)2
] n∑
i=1

(
Ni+1

)2
∫ 2π

0
g2
i (t)dt+(M+1)2β

(‖u‖V )
n∑
i=1

∫ 2π

0
g2
i (t)dt

= β(‖u‖V )
n∑
i=1

[
(M+1)2−(Ni+1

)2
]∫ 2π

0
g2
i (t)dt ≥ 0,

(2.14)

and from

∫ 2π

0
yT(t)Ay ′(t)dt = 1

2
yT(t)Ay(t)|2π0 = 0, (2.15)

we can prove that for all y ∈ Y and all u∈ V ,

〈
T ′(u)y,y

〉=
∫ 2π

0

[
y ′T (t)y ′(t)−yT(t)Ay ′(t)−yT(t)∇2G(u,t)y(t)

]
dt

≥ β
(‖u‖V )

(M+1)2+1
‖y‖2

V .

(2.16)

Obviously, for all x ∈X and all y ∈ Y , we have the following:

〈
T ′(u)x,y

〉−〈x,T ′(u)y〉

=
∫ 2π

0

[
xT (t)Ay ′(t)−yT(t)Ax′(t)]dt

=
∫ 2π

0
2
(
f1(t), . . . ,fn(t)

)
PT1 AP2

(
g1(t), . . . ,gn(t)

)Tdt

=
∫ 2π

0

n∑
i=1

2γifi(t)g′i(t)dt = 0.

(2.17)

Let α1 =α(s)/(M2+1) and β1(s)= β(s)/((M+1)2+1), then

c(s)=min
{
α1(s),β1(s)

}≥min
{
α(s),β(s)

}
/
(
(M+1)2+1

)
. (2.18)

Based on conditions (1.7),
∫+∞
1 c(s)ds =+∞. Since T ′(u) is positive definite on

Y and negative definite on X, we see that X∩Y = {0}. Moreover, it is readily

seen that

dimensionX = dimensionZ =
n∑
i=1

(
2Ni+1

)
. (2.19)

Thus, since it was shown above that V = Z ⊕Y , it follows, by application of

Lemma 1.3, that V = X ⊕Y . We may, therefore, apply Lemma 1.2 to get the

conclusion of the theorem.



A MIN-MAX THEOREM AND ITS APPLICATIONS . . . 1107

If we setV = {v(t)= (v1(t), . . . ,vn(t))T | vi(0)= vi(π)= 0, i= 1, . . . ,n; v(t)
to be absolutely continuous and v′(t)∈ L2[0,π]}, it is easy to know that V is

a Hilbert space about the following inner product:

〈u,v〉 =
∫ π

0

[
u′T (t)v′(t)+uT(t)v(t)]dt. (2.20)

Again, define the norm induced by this inner product and subspaces X, Y , and

Z , correspondingly; we can prove the following theorem similarly.

Theorem 2.3. Assume that G(u,t) is continuous and C2-mapping with re-

spect to u and that conditions (1.7) hold for all t ∈ [0,π], all u∈ Rn, and for A
is admissible with matrices B1 and B2. Let e(t) be a continuous function. Then,

there exists a unique solution to (1.6), which satisfies boundary value condition

u(0)=u(π)= 0.

Especially, when B1 = N2I and B2 = (N + 1)2I, where N is natrual and I
is n×n identity matrix, A is admissible with B1 and B2 as long as A is real

symmetric. So, we have the following corollary.

Corollary 2.4. Assume thatA is real symmetric and there exist two positive

continuous functions δ1 and δ2 : Rn → R such that for all u ∈ Rn and all t ∈
[0,2π],

N2I < δ1(u)I ≤∇2G(u,t)≤ δ2(u)I < (N+1)2. (2.21)

Let ρ(r) = min{1−max∑n
i=1 |ξi|≤r (δ2(ξ)/(N + 1)2),max∑n

i=1 |ξi|≤r (δ1(ξ)/N2)−
1}, and if

∫+∞
1 ρ(r)dr = +∞, then the system (1.6) has a unique 2π -periodic

solution.

If we setA= 0, system (1.6) becomes a conservative system and admissibility

is trivial. So, the main conclusion in [7] (the method there is different from ours)

is a corollary of Theorem 2.2.

Corollary 2.5. Assume that there exist integers Ni ≥ 0 such that for all

u∈ Rn and all t ∈ [0,2π],

N2
i < λi(u,t) <

(
Ni+1

)2, i= 1, . . . ,n;

δ
(‖u‖, t)= max

‖v‖≤‖u‖

{
min

1≤i≤n

{
λi(u,t)−N2

i ,
(
Ni+1

)2−λi(u,t)
}}
,

(2.22)

where λi(u,t), i= 1,2, . . . ,n denote the eigenvalues of ∇2G(u). If
∫+∞
1 δ(s,t)ds

=+∞ for all t ∈ [0,2π], then there exists a 2π -periodic solution to (1.5).

Let G(u,t)=G(u) and

c(s)=min
{
α(s),β(s)

}≥ c0 > 0; (2.23)

we can get the following unique existence corollary.
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Corollary 2.6. If the real symmetric matrix A is admissible with real sym-

metric matrices B1 and B2, then assume that

B1 ≤∇2G(u)≤ B2, N2
i < λi ≤ µi <

(
Ni+1

)2, (2.24)

where λi and µi are eigenvalues of B1 and B2, respectively, and Ni, i= 1, . . . ,n
are nonnegative integers; there exists a unique 2π -periodic solution to system

(1.5).

3. Examples. It should be pointed out that conditions (1.9) and (1.11) are

not completely the same as (1.3). In fact, from (1.3), we know that α(‖x‖)
depends on subspace X and β(‖y‖) depends upon subspace Y . So, condition

(1.3) is more strict than conditions (1.9). But, from (1.11), we can deduce the

following conditions:
∫ +∞

1
α(s)ds =+∞,

∫ +∞
1
β(s)ds =+∞. (3.1)

Conversely, note that (3.1) does not imply (1.11). Now, we give an example to

illustrate it.

Example 3.1. First of all, we define two nondecreasing functions as follows:

α(x)= 2−(2i+1)2 , x2i−1 ≤ x < x2i+1;

β(x)= 2−(2i+2)2 , x2i ≤ x < x2i+2,
(3.2)

where xi =
∑i
k=0 2k

2
, i= 0,1, . . . , x−1 = 0, and β(x)= 1, when 0≤ x < 1.

It is easy to see that α(x) and β(s) are two nondecreasing positive functions

for all x ∈ [0,+∞); and the number of noncontinuous points is countable

infinite. We also have

∫ +∞
1
α(x)dx = 1+

+∞∑
i=1

x2i+1−x2i−1

2(2i+1)2

= 1+
+∞∑
i=1

2(2i+1)2+2(2i)
2

2(2i+1)2
=+∞,

∫ +∞
1
β(x)dx =

+∞∑
i=1

x2i−x2i−2

2(2i)2
=
+∞∑
i=1

2(2i)
2+2(2i−1)2

2(2i)2
=+∞,

∫ +∞
1

min
{
α(x),β(x)

}
dx ≤

+∞∑
i=0

x2i+1−x2i

2(2i+2)2
+
+∞∑
i=0

x2i−x2i−1

2(2i+1)2

≤
+∞∑
i=0

2(2i+1)2

2(2i+2)2
+
+∞∑
i=0

2(2i)
2

2(2i+1)2
<+∞.

(3.3)

Secondly, from the definition of α(x) and β(x), it is easy to make them con-

tinuous and even continuously differentiable, and then they are still positive

nondecreasing and satisfy (3.1), but they do not satisfy conditions (1.11).
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We can state, from the following example, that Theorem 2.3 is more general

than the results of [1, 2, 3, 4, 5, 6, 7, 8].

Example 3.2. Assume that f(t) is continuous and 2π -periodic in (1.6). Let

G(u,t)= 5
4

(
1+ 4

5
sin2 t

)(
u2

1+u2
2

)
+ 3

2

(
1+ 2

3
sin2 t

)
u1u2

+u1 ln
(
u1+

√
1+u2

1

)
+u2 ln

(
u2+

√
1+u2

2

)

−
√

1+u2
1−
√

1+u2
2+C1u1+C2u2,

(3.4)

then

∇2G(u,t)=




5
2

(
1+ 4

5
sin2 t

)
+ 1√

1+u2
1

3
2

(
1+ 2

3
sin2(t)

)

3
2

(
1+ 2

3
sin2(t)

)
5
2

(
1+ 4

5
sin2 t

)
+ 1√

1+u2
2



,




5
2

3
2

3
2

5
2


+




1√
1+u2

1

0

0
1√

1+u2
2


≤∇

2G(u,t)

≤




13
2

5
2

5
2

13
2


−




1− 1√
1+u2

1

0

0 1− 1√
1+u2

2


 .

(3.5)

It is easy to see that G(u,t) satisfies (1.7). Therefore, there exists a unique

2π -periodic solution to (1.6) by Theorem 2.2, but we cannot make this conclu-

sion from [1, 2, 3, 4, 5, 6, 7, 8].
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