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1. INTRODUCTION. Let £(z) = I a 2" be analytic in |z| < R. For a non-decreasing

sequence of positive numbers {dn}:=1’ the Gelfond-Leontev (G-L) derivative of f is
defined as [1]

@
Df(z) = Xnal dnanz . (1.1)

The kth iterate Dkf, k=1,2,¢e0, of D i8 given by

k L n~-k
D f(z) = zn=kdn"'dn-k+lanz (1.2)
= Cn-k a zn-k
n=k e n

-1 _
where, eo=1 and en-(dldz...dn) y N=1,2,000 If d‘_l = n, Df is the ordinary

derivative of f; whereas, if dn =1, D is the shift operator L which transforms

a_z" into Lf(z) = b a zn_l.
n n=

£(2) = zn= 1"n

0

Let,

Wz) = E_ce 2" (1.3)

and have radius of convergence Ro. From the monotonicity of {dn}:=l’ we have

R =1im d_ = sup {d }.
° n+*® n»1 n

Clearly, ¢(0) =1 and Dy(z) = ¥(z). Thus, Y(z) bears the same relationship to the

operator D that the function exp(z) bears to the ordinary differentiation.
For an entire function £, Nachbin used the function Y(z) as a comparison

function for measuring the growth of maximum modulus of f on Izl = r. Thus, the
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growth parameter V~type of f 18 defined as the infimum of the positive numbers
T such that, for sufficiently large r,

[£¢z)| < My(tr) (1.4)

where, Y(z) is entire and M is a positive constant. We denote y-type of f as
'rv(f). It is known [2,p.6] that

a 1/n

T, () = 1im  sup 2| . (1.5)
v n+o® en

For dn = n, the yY-type of an entire function f reduces to its classical exponential

type and the formula (1.5) gives its well known coefficient characterisation [3, p.

11].

The comparison function Y(z) can also be used to define a measure of growth
analogous to classical order (3, p.8] of an entire functiom. Thus, for an entire
function f, let the V-order pw(f) of f be defined as the infimum of positive numbers
p such that, for sufficiently large r,

l£(2)] < wee?) (1.6)

where V(z) is entire and K is a positive constant.
Shah and Trimble [4,5] showed that if f is entire then, the assumption that the
(n )
classical derivatives f P are univalent in A = {z: |z| < 1} for a suitable

increasing sequence {np};_l of positive integers affects the growth of the maximum

modulus of f£. If instead, we assume that the G-L derivatives anf of an entire
function f are univalent in A, then it is natural to enquire in what way the
y-type and V-order of f are influenced. The present paper is an attempt in this

n
direction. In Theorem 1, we find that if f is entire, D Pf are univalent in A& and
lim  sup (np-np_l) =y, 1 <y <= then the VY-type ‘t*(f) of £ must satisfy

p*a

T, (6) < 2(d(utD).a(2)
Further, i{f 4 = <, then f need not be of finite Y~type. Our Theorem 2 shows that

n
if £ is entire, D Pf are univalent in A and np ~n as p * », then

p+l

1 .
p!la(f) < log d(n_-n _1)

1 - 1im sup
p-}n

log d(np)
It is clear that if 0 < pw(f) < 1, then the above inequality gives no relationship

n
between D Pf and the y-order of an entire function f. In fact, no such relation of

this nature exists. This 1is 4illustrated in Theorem 3, wherein for any given
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p, 0 € p <1, and any given increasing sequence {n }°° of positive integers, we

p p=l

n
construct an entire function h, of ¢-order p, such that D Ph 1s univalent in A if

and only 1if n-np.

In the sequel, we shall assume throughout that dn + ® gg n * ®,
2. Y-TYPE AND EXPONENTS OF UNIVALENT G-L DERIVATIVES.

THEOREM 1. Let f(z) = Em a zn be an entire function and {n }w be an
Let =0 %n p'p=1 =22

0

n
increasing sequence of positive integers. Let D Pf be analytic and univalent in

A . Suppose 1lim sup (np—np_l) =yu, 1 €y <=  Then, the y-type T¢ (f) of £
satisfies L

T (6) < 20d(ut 1) .d(2)) YV, @2.1)
PROOF. By the hypothesis,
n o K
D Pe(z) = I, d(n_+o). . - d(k+aln +k)z

are univalent in A . Since, for any function G(z) = b°+blz+bzz+..., univalent in

8, it is known [6] that [b | < n|b,| for n=2,3,..., ve get

d «..d
k 1
a(n_+k)| € k ——— d(n_+1)...d(2)|a(n_+1 2.2
lato v | <k 7, dnghn). Y ata +1) | (2.2)
k+n
p
for k=1,2,... and p=2,3,... « In particular, putting k-np+1—np+1 and inducting upon
p, we get, for p? 2and 2 < k < np+l-np+l'
dk...d1 P
< — - - ves .
lato #0| € Ak =" I (n;-n;_ +Dd(n -0, +1)...d(2) (2.3)

k+n 1 i=2
P

where A-d(n1+1)...d(2)|a(nl+l)’. Hence, for sufficiently large p,

a(n +k) 1/(np+k)

e(np+k)

1/(np+k)

1/(n_+k) p
1..eead(2)} (2.4)

< (140(1))(dy e e ed)) P I {(n;-n
i=2

-1 D) dlmymmy g+
1/(n_+k)
Since, (dk"'dl) P is an increasing function of k, and

(n

p+l—np) <u', u' >y, for sufficiently large p,

l/(np+k) 1/n +1
(deeed)) < Wy ot .d()) PR (1se(1))
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Further [7], for p > 2

p 1/(n_+2) n_ p/n
I (n,-n, ,+1) <+  Pca2. (2.5)
1=2 i -1 p

Using (2.5) and the preceding inequality in (2.4), we get for sufficiently large p,

1/(n_+k)
a(n_+k) P P 1/(n +k) 26
|m§+_k)_| < 2(1+0(1)) 11-12 (d(ny=n,_ +1)...d(2)) (2.6)
a a
Now, if aj >0, tj >0, L tj > 0 and max (31) <-§§ then clearly,
1<§<N-1
N
I
_ji_gj_tl < .;.N_ B (2.7)
351 3t

Further, log(d(j+1)...d(2))/] is an increasing function of j for
1< 3j<yuy,u=1,2,,.. . Thus, if 1 <4<y,

log(d(j+1)...d(2) ( log(d(u+1)...d(2)) (2.8)
] W

Let p > P, 1<y <y Suppose tY is the number of ji's in [po,p] such that

n -n

141 =Yy for j = 3y Then, by (2.7) and (2.8),

3

u
poillog(d(nj-nJ 1HD...d(2)) Yfl t, (Log(d(¥+1)...d(2))

; - < log(d(u+l)...d(2)) .
(n,-n, ) u

3 1 I vt
p +1 I- Y=1 Y

The above inequality implies that

P
P 1/ (n_+k) L, log(d(n,-n_ . +1)...d(2))
I (d(n;n,_ +1)...d(2)) P < exp 22 L 11 ) (2.9)
1=2 » "
p 1 log(d(n -n, _ +1)...d(2))
< exp {o(1)+ -2 }
P
1 (nyny )

< expfo(1)+ log(d(u+l)...d(2))}
Using the estimate (2.9) in (2.6) and proceeding to limits

1k aln_+k)  1/(n_+k)

k
lim  sup |— = lim P : -
> - P Iekl sup {' e(n +k) :2<k < np+1 np+1, p > 2}

< 2(d(ut1).. .d(2)) /¥,

This completes the proof of the theorem.
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REMARK 1. In Theorem 1, it is sufficient to take the function f to be analytic in
lzI < R, for some R, 0 < R < », i{f the sequence {dn}°° in the definition of G-L
n=1

derivative of f satisfies the condition 1im  ((ZT logd(1))/m)==. In fact, for an

o 1=2

n
analytic function f in ‘zl <R, if D Pf are univalent in A ,

1lim sup (n_-n =p, 1 €y =® and
s p ( » p_1) > »
m
21’2 log d(1i) .

1lim

m > ® o

holds, then f is necessarily entire. To see this, we use (2.5) and

1/(np+k)

(dk"'dl) < 1+a(1)

for sufficiently large p in (2.3) to get

1/(n_+k)
|a(np+k)| P (2.10)

n
P
< 2(l+0(l))exp[%— I log(d(ni—n

£ (D - 2))
P

i_

n_+k

P

L log d(1)]

i=2

for sufficiently large p. But since, for sufficiently large p,(np—np_l) < u',u' >y,

R
n_+k
p

n
P
1 - > @
o iEZ log(d(ni ni_l+1)...d(2)) +0as p*r ™
P
Thus, by (2.10) and the condition 1lim ((Z:‘_2 logd(i))/m) = =

m+ ®

Lin l ll/k ) . 1/ (n +0)
sup |a = lim su a(n_+k : -
K+ ® k P I ( P )' 2 <k« np+l np+1’ p > 2}

= 0.
REMARK 2. The inequality (2.1) can be improved by imposing suitable additional

® For example, let the sequence TN

restrictions on the sequence {d_} ..
n n=1 n’n=1
be such that
{d(n+2)}" 2
o+, .a(2y > 3+, n=1,2,3,... . 2.11)

Note that (2.11) is satisfied for dn=na,a > 1.

Because of (2.11), the function s(j) defined by

s(4) = log(d(j+1)...3(2))+log(1+l)

is an increasing function of j and so for j=1,2,...u; u=1,2...
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log(d(j+1)...d(2))+log(3+1) < log(d(u+1)...d(2))+log(u+l) (2.12)
3 ' H :

Let ty be the same as in the proof of Theorem 1. Using (2.7) and (2.12), we get

P H
> % {log(d(3+1)...d(2))+log(3+1)} z t, {log(d(Y+1)...4(2))+log(y+1)}
o

Y
P " u
p°§1 (oy=ny_p) v Yty
c log(d(u+l)...d(2))+log(utl) |
u
Again, we have
1/(n_+k)
1 {(n;n,_+1d(n;~n,_ +D...d(2)} P
i=2
P
» %, {log(d(ny-n,_,+1)...d(2)) + log(n ,-n, _,+1)}
< exp {o(1) + =2 1
Py 51 (ny=my_p)
The above inequality, when employed in (2.4), gives
a (n_+k) l/(np+k) l/(np+k)
e(np+k) < (1+o(1))1nz{(ni n,_ +Dd(n -0, _ +1)...d(2)}
< ) ¥ a2 v,
Now, on proceeding to limits, we get
t,(6) < D Paen . aenth (2.13)

It is clear that the bound on ‘W(f) in (2.13) is better than that in (2.1).
REMARK 3. By taking wu=l1, Theorem 1 gives Tw(f) < 2d(2), a result recently
proved in [8].

Theorem 1 shows that if (np-np_l) = 0(1), then f is of finite y-type.
We now give an example to show that if 1lim sup(np-np_l) = »  then f need not be of
p#w

finite Y-type.
EXAMPLE. Let {np};-l be an increasing sequence of positive integers such that

(n no4 7P ) > 2 for all p. Further, assume that the sequence {dn}n_l is such that
(1) d, = 1 and log d(n) ~ log n as n + ®
(i1) n_ = o(n)

P P

(1i1) np=0(nplog d(np))
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where, n, = tP | log(d(n, - +1)...d(2)),

i=2 171

Let ¥ be a non-decreasing step function such that w(nl)-w(nz),

exp (n))
y(n ) = > P22
and
y(x) = ¥(n_) n<x<n
ptl.
Let
v(i)
aG+D.. .d(D) (J—npﬂ) if j-np for some p
€41 =
0 otherwise.
Define
(z) = ):w j
g j=ogjz
We first show that g is an entire function. We have
1/k ¥(n ) l/np+l
- P
L, :“P|gk| 11$ sup g +l)...d(2)]
exp(n /n )
< 1im supl 2 I/n +l]
p*> (d(n +l)...d(2))
np 1 np+1
= 1im sup [exp (;— TR 1§2 log d(1))] .
p*® P

Since log d(n) ~log n as n* ® , using the condition (i11), we get from the above

inequality that

1im sup |gk|1/k.

k > »
Hence g is entire. It 1is easily seen that g i1s of order l. But, by the condition
(11),

1/k ¥(n) /
o) 1/n +l
lim sup |—| = lim sup ven +1)d(n +1)...d(2))
k + > k P b d
exp(n _/n)
> 1lim sup —LE P .

pr° 2

Thus, f is not of finite Y-type . It remains to see that
n n -n_+1

D g(z) = Z d(np+k+l)"'d(“p+k-“p+2)a(np+k

are univalent in & . To this end, it is enough to prove that

d(n +1)...d(2)
(np+k np+1) d(n p-l.tn +1)...d(2)
ptk p

L1 la(np+k+l)l
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< d(np+1)...d(2)|a(np+l)|;

or, equivalently to show that

- ‘lﬂ(np+k)
z - - < W(n )o
k=1 d(nP+k np+l)...d(2) P

Using the definition of ¢ , the last inequality reads as

. 1 exp(n k-ﬂp)
T — p <1l (2.14)
k=1 2k d(np+k np+l)...d(2)

Now, an induction on k, gives, for k=1,2,3,...

prk
D eed(2) < dlm on ) Lnd(2)

exp (N ") = iy dnymy

Hence, (2.14) is clearly satisfied.

Y-ORDER AND EXPONENTS OF UNIVALENT G-L DERIVATIVES.

3.
[1,#), is said to be Slowly Oscillating (S.0.) if

A function S(x), continuous on

for every positive number ¢ > O,

lim -%%551 -1.
X > > X)
A function H(n) is said to be the restriction of a Slowly Oscillating function
It is known [9] that, as k + «

S(x) if S(n) = H(n) for every positive integer n.

E:_lﬂ(i) ~ H(K) - (3.1)
THEOREM 2. Let f(z) = Z:_o anzn be an entire function of Y- order pw and

n
be a strictly increasing sequence of positive integers. Let D Pf pe

{n}"
p p=l
analytic and univalent in 4, such that N, T My 38 P + ®, If log d(n) is the
restriction of a slowly oscillating function on integers, then
o, (£) < 1 e (3.2)
¥ log d(n_-n -l)
1-1im su
p*>w P [log d(np) ]
We need the following lemmas.
LEMMA 1. Let Y be defined by (1.3). Let Y =min y(x™)x ', a > 0.
x>0
Then,
(3.3)

(1 - i_) e§n+a!
Y Sed ( ).
n nn a
L
PROOF. Since {d }n | 18 increasing, we note that for any pair of integers k and

n, e < e“d::-k . Thus,
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<ed” g rl-k xak.

ak
nn kEO n

Vo) = Eg epx

Let 0<w<1l. Setting xw-ud‘l‘/a, we get

-n

n(l - %) .
n (1-v?)

a,.-n
'P(xw)xw <ed

Choosing w = (n/n‘v-a)l/a to minimize the right-hand side of the above inequality, we

have

1

_ n(l - =)
Yn<min W(xa)xn<ed a (& n+a)
0<w<l1 o na a

LEMMA 2, Let f(z) = 2:_0 anzn be an entire function of y-order Py

where the sequnce {d(n)} in Df is such that log d(n) is the restriction of a slowly

oscillating function on positive integers.

Then,
log d(n)
o (£) = lim sup 228 301 (3.4)
1’( n+“p-1°g Ianl

PROOF. By Cauchy's inequality, we get

|a | < H(r)r-n, M(r) = max If(z)l.
n ’z|<r

Since f is of VY-order Dw(f) = p, for any € > 0, |f(z)’ < Mw(r‘»e).

So that

I a l < m,(rp+e )r-n

Using Lemma 1, we have

1
n(l - —)
pte ef n+p+c! .
la | <Med ) (3.5)

But, since log d(n) is the restriction of a S.0. function, by (3.1),

n

L, log d(1) ~ n log d(n) as n * =. Thus, it follows from (3.5)

1im sup 2110 d(n) <p.
n+® o8 |8,

To prove that equality holds in (3.4), suppose that

lim supl: ig din) < pe
n* *® 8 n
/ey

Then, there exist c:tl < p such that lanl < e

1=2

for n > n . It now follows that,

for |z| =r,
n
|f(z)’ < zn:O lan' o+ ‘En°+1 |an‘ e (3.6)

1/01 n

e r .

]
< o1 + z:no+1 n
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Choose

[+
N(r) = log ¥(r l)
log r *

It is easily seen that N(r) * ®* as r + ®, Since for all values of k and n,

e < ekdl;-n , we have
1/p 1/p. k-n/p
® 1 n o 1 1 n
zn-O €n r < zn-O % dk r
1 1
- /ol . /pl P s o
k k =0 /e, ° °
9%
/e,
Let k be chosen such that (r/dk ) < 1. Then,
. b akri/ey  1/ey
Zn.o e, r (——I/—DI————. (3.7)
(dk ~r)

Since the left hand side of (3.7) is independent of k, letting k + =, we get

R L
n=0 n r °
Thus

- /e, o
zn-N(r) e r=o(l), as r+ >,

N(r) 1
Since, r = exp (N(r)log r) = ¥(r '), it now follows from (3.6)

/e
le2)| < o) + 2T o L £ o(1)
[o]

’1
< 0(1) v(r ).

Since pl <pand p is8 the V-order of £, the above inequality contradicts the
definition of V-order. Thus, equality must hold in (3.4). This proves the lemma.
nP
PROOF OF THEOREM 2. Since D f are univalent in A, from (2.2), we get for
<k< - .
sufficiently large p and 2€Kk “p+l np +1

1/(n_+ k)
|a(np+ k)l P (3.8)
deeeendy AL 1 (n 0
< (1 + °(1))(—§;;;_TTTEIJ i§2{(ni-ni_lﬂ)d(ni-ni_lﬂ)...d(2)}
P

Further, we have
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1/(n_+k) 1/n
p _ p+l
(deeed)) < (cl(np+l np+l)...d(l))
and
-1/(n_+k) —1/(np+2).

(dnp-i-k...dl) P < ()

Using these inequalities, (2.5) and (3.8), it follows that, for sufficiently large p,

1/(n_+k)
Ia(np+k)| P (3.9)
ptl (n,-n,_.)/n
« LD ey ey HE
(d(np)...d(l)) P

Mp = max {log d(ni-ni_l+1): 2<4<p}.

Since log d(n) is the restriction of a slowly oscillating function on integers, by
(3.1)
ptl

g, dn sy g7y I/mg

1 %4-1
(d(a ). v d(1)) 1/n,

log

ptl n

1 P
< — - - -
"p [jE, (ny-ny_)) log d(ny-n,_ +1) =) log d(1) |

Zpt1
< “p Mp+l-log d(np).

Consequently, for sufficiently large p,

(?2 +k) log d(n2 +k) log d(np+l+1)

<

n
+
-log|a(n_+k) | log dn ) - 2L u
P P np

p+1—10g 2
Again, from the definition of S.0. function 1log d(np) ~ log d(np+1) as p * =

Hence,

< 1 . (3.10)
1 - 1im sup
p* > log d(np)

Py

If M 1is bounded, there is nothing to prove. So, let Mp + ®wag p*r @,
For p 2 2, let,

log d(n_- +1
og (np -1 )

Ap = TTog d(np)

and

M

B :—....L__-——v
p log d(np)

But as M_ = max {log d(ni—ni l+1): 2<i<p}, for each p > 2, there is some
p -
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< uch that M_ = log d(n_ -n +1). Hence
9 9, <ps b g 0, qp‘l )

B < A . Takin > @
p qp g qp ’

1im sup B_ € 1lim sup A_.
p* ™ P p*+> P

Now (3.2) follows from (3.10).

COROLLARY. Suppose the conditions of Theorem 2 are satisfied. If as p + =,

log d(np-np_l) = o(log d(np))
then,
<1
ow(f) 1

THEOREM 3. Let 0 < p <1, Let {np};-l be a strictly increasing sequence of

non-negative integers. Then, there is an entire function h of y-order p such that

D"h is univalent in A if and only if n=n_ for some p.

14
PROOF. Suppose p > 0 and {dn}:_l is an increasing sequence of positive numbers

such that log d(n) is the restriction of a slowly oscillating function on integers and

dl-l. Let,

1
Zpd(np+1)...d(2) (3-n +1

-4 -
) 1f j np for some p

L

0 otherwise.

Define, h(z)= 2;_0 h zg. Then, h(z) is an entire function and

- k log d(k
oy tin e A

(n_+1) log d(gnfl)

= 1im sup =P,

p**® plog2 + % log(d(np+1)...d(2))

n
P
To show that D D given by

d(np+k+1)...d(2) 1

np+1)...d(2)

-n_+
np+k np

=0 (Ppic

n
P
D “h =1 -n_+
(z) np 1) h(np+k+1)z

d(np+k-
is univalent in A, it is enough to prove that

d(?p+k+l)"'d(2)
np+l)...d(2)

|n¢n_, . +1)|

-n_+
np 1) pHk

o
L (n

= + -
k=1""p+k d(n K

< d(np+1)...d(2)'h(np+l)|.
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p <1,

- , d(np+k+1)...d(2) | '
o (o, -n ) - h(n__. +1)
k=1 ““p+k p+l d(np+k np+l)...d(2) ptk

1 -1

(L og 1 (dln_, #1)e 0 0d(2)) P
P KLk A =0 AD. L d(2)
< ;‘ (d(np+l)...d(2)) kEI _2-1-(-

= 4+ .d(2) | nta+D) |

+1 n
As D" h(0) = O unless n-np for some p, only D Ph are univalent in A.

in place of h +

1.

2.

6.
7.

If

p=0 , then take defined by

h3+1

1
2p+d(np+l)-..d(2) (j-np+l)

if j-np for some p.

41

0 otherwise-

441 in the Taylor series of the function h(z).

REFERENCES

GELFOND, A.O0. and LEONTEV, A.F. On a generalization of Fourier series, Mat. Sb.

(N.s.) 29 (71), (1951), 477-500.

BOAS, R.P., BUCK, R.C. Polynomial expansions of analytic functions, Ergebnisse

BOAS

der Mathematik und ihrer Grenzgebiete, 19, Springer-Verlag, 1964.
, ReP. Entire Functions, Academic Press, 1954,

SHAH, S.M. and TRIMBLE, S.Y. The order of an entire function with some

derivatives univalent, J. Math. Anal. Appl. 46 (1974), 395-409.

SHAH, S.M. Analytic functions with some derivatives univalent and a related

conjecture, Atti. Acad. Naz Lincei Rend Cl. Sci. Fis. Mat., Natur. 61 fasc. 5
(1976), 344-353.

BRANGES, L.De. A proof of Biberbach Conjecture, Acta. Math. 154 (1985), 137-152.

SHAH,

S.M. and TRIMBLE, S.Y. Entire functions with some derivatives univalent,
Canadian J. Math. 26 (1974), 207-213.




28 G.P. KAPOOR, O.P. JUNEJA AND J. PATEL

8. JUNEJA, O.P. and SHAH, S.M. Univalent functions with univalent Gelfond-Leontev
derivatives, Bull. Austr.Math. Soc. 29 (1984), 329-348.

9. HARDY, G.H. and ROGOSINSKI, W.W. Note on Fourler series (III), Asymptotic
formulae for the sums of certain trigonometrical series, Quart. J. Math.
(Oxford Ser.), 16 (1954), 49-58.




