SUPER AND SUBSOLUTIONS FOR ELLIPTIC EQUATIONS ON ALL OF \mathbb{R}^n

G. A. AFROUZI and H. GHASEMZADEH

Received 26 October 2001

By construction sub and supersolutions for the following semilinear elliptic equation

$$-\Delta u(x) = \lambda g(x)f(u(x)), \quad x \in \mathbb{R}^n,$$

which arises in population genetics, we derive some results about the theory of existence of solutions as well as asymptotic properties of the solutions for every n and for the function $g: \mathbb{R}^n \to \mathbb{R}$ such that g is smooth and is negative at infinity.

2000 Mathematics Subject Classification: 35J60.

1. Introduction. In this paper, we discuss the existence and nonexistence of solutions as well as asymptotic properties of the solutions of the equation

$$-\Delta u(x) = \lambda g(x)f(u(x)), \quad x \in \mathbb{R}^n, \quad 0 \leq u(x) \leq 1 \quad (1.1)$$

which arises in population genetics (see [7, 11]). The unknown function u corresponds to the relative frequency of an allele and is hence constrained to have values between 0 and 1. The real parameter $\lambda > 0$ corresponds to the reciprocal of a diffusion coefficient.

We assume throughout that $g: \mathbb{R}^n \to \mathbb{R}$ is smooth which changes sign on \mathbb{R}^n. Also we will assume throughout that f satisfies the condition $f: [0, 1] \to \mathbb{R}$ is a smooth function such that $f(0) = f(1) = 0$, $f'(0) > 0$, $f'(1) < 0$, and $f(u) > 0$ for all $0 < u < 1$.

By the definition of f, it is clear that (1.1) has the trivial solutions $u \equiv 0$ and $u \equiv 1$.

The existence of solutions for (1.1) in the bounded region case with Dirichlet or Neumann boundary conditions is discussed in [7, 11], but in this case all of \mathbb{R}^n is much more complicated (see [3, 6, 7, 8, 9, 12, 13]). The results obtained in [7] with the assumption that g is negative at infinity show that the existence theory for solutions of (1.1) is very different for the two cases $n = 1, 2$ and $n \geq 3$.

Some of the nontrivial solutions were bifurcating off the trivial solution $u \equiv 0$. In order to investigate these bifurcation phenomena, it was necessary to understand the eigenvalues and eigenfunctions of the corresponding linearized problem

$$-\Delta u(x) = \lambda g(x)f'(0)u(x), \quad x \in \mathbb{R}^n. \quad (1.2)$$

The existence of positive principal eigenfunctions of (1.2) with the following conditions on g was considered in [6]:

(i) g is negative and bounded away from zero at infinity; or

(ii) $|g(x)| \leq k/(1 + |x|^2)^\alpha$, $n \geq 3$,

for some constants $k > 0$ and $\alpha > 1$, and these results for the case $g^+ \in L^{n/2}(\mathbb{R}^n)$, $n \geq 3$ where $g^+(x) = \max\{g(x), 0\}$ are extended in [3].
In this paper, we investigate the existence of solutions of (1.1) with the assumption that \(g \) or \(g^+ \) are small at infinity.

Our analysis is based on the construction of sub and supersolutions.

It is proved in [2] that the positive principal eigenvalue of the Dirichlet boundary value problem

\[
- \Delta u(x) = \lambda g(x)u(x), \quad x \in D,
\]

\[
u(x) = 0, \quad x \in \partial D,
\]

where \(D \) is a bounded domain with smooth boundary has the variational characterisation

\[
\lambda_1^+(D) = \inf \left\{ \int_D |\nabla u(x)|^2 \, dx : u \in H_0^1(D), \int_D gu^2 \, dx = 1 \right\}.
\]

Also, it is well known that the above infimum is attained and a minimizer \(\phi_1 > 0 \) is smooth, that is, \(c^2(D) \). Hence \(\phi_1 \) satisfies the Dirichlet boundary value problem (1.3), so \(\phi_1 \) is a principal eigenfunction corresponding to principal eigenvalue \(\lambda_1^+(D) \).

Suppose, however, that \(g = g^+ - g^- \) where \(g^+(x) = \max\{g(x), 0\} \) and \(g^-(x) = \min\{g(x), 0\} \).

If \(n \geq 3 \) and \(g^+ \in L^{n/2}(\mathbb{R}^n) \), then for all \(u \in H_0^1(D) \) such that \(\int_D gu^2 \, dx = 1 \) we have

\[
1 = \int_D gu^2 \, dx \leq \int_D g^+ u^2 \, dx \leq \|g^+\|_{L^{n/2}(D)} \|u\|^2_{L^2(D)} \leq c(n) \|g^+\|_{L^{n/2}(D)} \|\nabla u\|^2_{L^2(D)},
\]

where \(c(n) \) is the embedding constant of \(H_0^1(D) \) into \(L^{2n/(n-2)}(D) \) and is independent of \(D \) (see Brézis and Nirenberg [5, page 443]). Thus

\[
\lambda_1^+(D) \geq \|\nabla u\|^2_{L^2(D)} \geq \left\{ c(n) \|g^+\|_{L^{n/2}(D)} \right\}^{-1} > 0.
\]

Also, it is well known (see [1]) that if \(g^+ \in L^{n/2}(\mathbb{R}^n) \), then \(\lambda^* = \lim_{R \to \infty} \lambda_1^+(B_R(0)) \) exists and \(\lambda^* \) is the principal eigenvalue of the equation

\[
- \Delta u(x) = \lambda g(x)u(x), \quad x \in \mathbb{R}^n
\]

and there exists a corresponding principal eigenfunction \(\phi \) such that \(\phi(x) \to 0 \) as \(|x| \to \infty \). In addition, \(\lambda^* \) can be characterized as follows (see [1, Lemma 2.7])

\[
\lambda^* = \inf \left\{ \int_{\mathbb{R}^n} |\nabla u(x)|^2 \, dx : u \in c_0^\infty(\mathbb{R}^n), \int_{\mathbb{R}^n} gu^2 \, dx = 1 \right\}.
\]
Theorem 1.1 (see [10]). If \(\lambda > \lambda^* \), then there exists \(u \geq 0 \ (u \neq 0) \) with compact support such that \(u \) is a subsolution of

\[
-\Delta u(x) = \lambda g(x) f(u(x)), \quad x \in B_R(0),
\]

\[
u(x) = 0, \quad x \in \partial B_R(0)
\]

for all \(R \) sufficiently large, also we can choose \(u \) sufficiently small.

2. **Sub and supersolutions for** \(n \geq 3 \). We assume \(D \subset \mathbb{R}^n \) is a bounded region with smooth boundary. We consider the following boundary value problem:

\[
-\Delta u(x) = \lambda g(x) f(u(x)), \quad x \in D,
\]

\[
u(x) = 0, \quad x \in \partial D.
\]

If \(\lambda > 0 \) be fixed, we can choose \(c > 0 \) such that for \(u, 0 \leq u \leq 1 \), the function \(u \rightarrow \lambda g(x) f(u) + cu \), for every \(x \in D \), is an increasing function.

Let \(h(x, u) = \lambda g(x) f(u) + cu \), then we have \(h(x, 0) \equiv 0 \) and \(h(x, 1) \equiv c \). We can write (2.1) as

\[
-\Delta u(x) + cu(x) = h(x, u(x)), \quad x \in D,
\]

\[
u(x) = 0, \quad x \in \partial D.
\]

It is well known that (2.2) has a unique solution \(u = Kf \) (see Amann [4]), where \(K \) is given by an integral operator whose kernel is the Green’s function for the problem, that is,

\[
(Kf)(x) = \int_D G(x, y) h(y, u(y)) \, dy.
\]

In (2.3), \(G(x, y) \) is the Green’s function of the operator \(-\Delta + c\) with Dirichlet boundary condition, also we can write (2.3) as \(u = KN(u) \) in where \(K : c(D) \to c^\alpha(D) \) is a compact linear integral operator with kernel \(G \) (see [4]) and \(N : c(D) \to c(D) \) is the Nemytskii operator corresponding to \(h \). Since \(h(x, \cdot) \) is increasing, it is easy to see that \(N \) is an increasing operator, that is, if \(u_1 \geq u_2 \), then \(Nu_1 \geq Nu_2 \).

We call \(u \in c^2(D) \) is a subsolution of (2.2) or equivalently (2.1) if we have

\[
-\Delta u(x) + cu(x) \leq h(x, u(x)), \quad x \in D,
\]

\[
u(x) \leq 0, \quad x \in \partial D,
\]

and \(u \in c(D) \) is a subsolution of (2.3) if

\[
u(x) \leq \int_D G(x, y) h(y, u(y)) \, dy, \quad x \in D,
\]

that is, \(u \leq KN(u) \). The definition of supersolution is quite similar.

It is well known that if \(v, w \) are sub and supersolutions of (2.2) (or for (2.3)), respectively, and \(v \leq w \), then there exists a solution \(u \) of (2.2) (of (2.3)) such that \(v \leq u \leq w \).
3. The case when \(n = 1, 2 \). In this section, we consider the problem

\[
-\triangle u(x) = \lambda g(x)f(u(x)), \quad x \in \mathbb{R}^n, \\
0 \leq u(x) \leq 1, \quad x \in \mathbb{R}^n,
\]

where \(g: \mathbb{R}^n \rightarrow \mathbb{R} \) is a continuous function which changes sign on \(\mathbb{R}^n \) and it has the following condition: (G) there exists \(R_0 > 0 \) such that \(g(x) < 0 \) for all \(x \in \mathbb{R}^n \) whenever \(|x| > R_0 \).

Also \(f \in C^1([0,1]) \) with the conditions

\[
f(0) = 0 = f'(1), \quad f''(0) > 0, \quad f'(1) < 0, \quad f(u) > 0, \quad 0 < u < 1.
\]

Theorem 3.1 (see [7]). Let \(u \) be a nontrivial solution of (4.1). Then there exists a real constant \(k \) such that \(0 < u(x) < k < 1 \) for all of \(x \) in \(\mathbb{R}^n \).

Now by using Theorem 3.1 and condition (G) on \(g \), we conclude that \(\Delta u(x) > 0 \) for all of \(x \in \mathbb{R}^n \) with \(|x| > R_0 \).

Theorem 3.2. Let \(u \) be a nontrivial solution of (4.1). Then \(u \) is nonconstant in out of the ball \(B_{R_0}(0) \).

Proof. Using assumption on \(g \), we have \(\Delta u(x) > 0 \) for all of \(x \in \mathbb{R}^n \) with \(|x| > R_0 \), so \(|\nabla u(x)| > 0 \) whenever \(|x| > R_0 \). Hence \(u \) is a nonconstant function in out of the ball \(B_{R_0}(0) \).

Theorem 3.3. Let \(n = 1 \) and \(u \) be a nontrivial solution of (4.1). Then \(u \) is a strictly decreasing function on \((R_0, \infty) \) and increasing function on \((-\infty, -R_0) \).

Proof. By using assumption on \(g \), we have \(u''(x) > 0 \) for all of \(x \in \mathbb{R}^n \) with \(|x| > R_0 \). So, \(u \) can have only one of the possibilities (a) and (b) in Figure 3.1. Figure 3.1(a) is impossible because we must have \(0 \leq u(x) \leq 1 \) for all \(x \in \mathbb{R}^n \). So \(u \) satisfy in Figure 3.1(b), thus \(u \) is strictly decreasing in out of ball \(B_{R_0}(0) \).

Theorem 3.4. Let \(n = 2 \) and \(u \) be a solution of (4.1) which is radially symmetric, then \(u \) is a strictly monotone function in out of the ball \(B_{R_1}(0) \), where \(R_1 > R_0 \).

Proof. It is obvious by using maximum principle.

4. The case when \(n \geq 3 \). Let \(g \) satisfy condition (G). It is easy to see that

\[
\Pi(x) = \begin{cases}
1, & |x| \leq R_0, \\
\left(\frac{R_0}{|x|} \right)^{(n-2)}, & |x| > R_0,
\end{cases}
\]

is a supersolution of (4.1), so we are ready to prove the following theorem.

Theorem 4.1. If \(\lambda > \lambda^* \), then there exists a nonconstant solution \(u \) of (4.1) such that

\[
\lim_{|x| \rightarrow \infty} u(x) = 0.
\]
Proof. We consider \overline{u} as a supersolution of (4.1). Also there exists a subsolution \underline{u} of (4.1) with compact support and sufficiently small (see [10]). So we can choose \underline{u} such that $\underline{u} \leq \overline{u}$, so there exists a solution u of (4.1) such that $\underline{u} \leq u \leq \overline{u}$. Also by using the definition of \overline{u}, we have $\lim_{|x| \to \infty} u(x) = 0$.

Theorem 4.2. Let $\alpha > 1$ and $\lambda > 0$ be arbitrary. Then there exists a supersolution \overline{u} of (4.1) such that $|\overline{u}(x)| \leq c|x|^{-\beta}$ for a constant $c > 0$, and

$$\beta = \begin{cases} n - 2, & n < 2\alpha, \\ 2\alpha - 2, & n > 2\alpha. \end{cases}$$

(4.3)

Proof. Using condition (G) of the function g, we have

$$|g^+(x)| \leq \frac{k}{(1 + |x|^2)^{\alpha}},$$

(4.4)

where $k \geq M(1 + R_0^2)^\alpha, M = \max g^+(x)$. So using [10, Lemma 4.3], the proof is complete.

References

G. A. Afrouzi: Department of Mathematics, Faculty of Basic Sciences, Mazandaran University, Babolsar, Iran

E-mail address: afrouzi@umcc.ac.ir

H. Ghasemzadeh: Department of Mathematics, Faculty of Basic Sciences, Mazandaran University, Babolsar, Iran
Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers
This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Deadline</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors
Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com