A COMMON FIXED POINT THEOREM FOR TWO SEQUENCES OF SELF-MAPPINGS

TAKESHI TANIGUCHI
Department of Mathematics
Kerume University
Miimachi, Kurume, Fukuoka, Japan
(Received September 7, 1988 and in revised form April 19, 1989)

ABSTRACT. In this paper a common fixed point theorem for two sequences of self-mappings from a complete metric space M to M is proved. Our theorem is a generalization of Hadzic's fixed point theorem[1].

KEY WORDS AND PHRASES. A common fixed point, self-mappings and complete metric spaces.

1980 AMS(MOS) SUBJECT CLASSIFICATION CODES. 47H10.

1. INTRODUCTION.

Banach's fixed point theorem has been generalized by many authors. Among such investigations there are several, interesting and important studies[2]. Particularly, K. Iseki[3] proved a fixed point theorem of a sequence of self-mappings from a complete metric space M to M. We are interested in fixed point theorems of a sequence of self-mappings since they pertain to the problem of finding an equilibrium point of a difference equation $x_{n+1} = f(n, x_n) \quad (n = 1, 2, ...)$.

Recently O. Hadzic proved the existence of a common fixed point for the sequence of self-mappings $(A_j)(j = 1, 2, ...)$, S and T where A_j commutes with S and T. His result is as follows:

THEOREM 1. Let (M,d) be a complete metric space, $S, T : M \to M$ be continuous, $A_j : M \to SM \cap TM (j = 1, 2, ...)$ so that A_j commutes with S and T and for every $i, j (i \neq j, i, j = 1, 2, ...)$ and every $x, y \in M$:

$$d(A_x, A_y) \leq q d(Sx, Ty), \quad 0 < q < 1 \quad (1.1)$$

Using Theorem 1, he gave a generalization of Gohde's fixed point theorem and extended Krasnoseliski's fixed point theorem.

In this paper we shall present a generalization of Hadzic's fixed point theorem.
2. MAIN THEOREMS.

Let \mathbb{N} denote the set of all positive integers. In this section we shall prove the following theorem.

THEOREM A. Let (M,d) be a complete metric space and let $\{A_p\}, \{B_p\}(p,q = 1,2,\ldots)$, be two sequences of mappings from M to M.

Suppose that the following conditions are satisfied; for all $m,n \in \mathbb{N}$ and all $x,y \in M$,

(a) there exists a constant k ($0 < k < 1$) such that

$$d(A_{2n-1}x, A_{2n}y) \leq kd(B_{2n-1}x, B_{2n}y),$$

$$d(A_{2n}x, A_{2n+1}y) \leq kd(B_{2n}x, B_{2n+1}y),$$

for all $m \geq n \geq 1$,

(b) $A_{2n}B_{2m} = B_{2m}A_{2n}$ and $A_{2n-1}B_{2m-1} = B_{2m-1}A_{2n-1}$,

(c) $B_{2n}B_{2m} = B_{2m}B_{2n}$ and $B_{2m-1}B_{2n-1} = B_{2n-1}B_{2m-1}$,

(d) $A_{2n-1}(M) \subset B_{2n}(M)$ and $A_{2n}(M) \subset B_{2n+1}(M)$.

If each $B_q(q = 1,2,\ldots)$ is continuous, then there exists a unique fixed point for two sequences $\{A_p\}$ and $\{B_q\}(p,q = 1,2,\ldots)$.

PROOF. Let x_0 be an arbitrary point in M. By condition (d) there exists a point $x_1 \in M$ such that $A_1x_0 = B_2x_1$. Next we choose a point $x_2 \in M$ such that $A_2x_1 = B_3x_2$. Inductively, we can define by condition (d), the sequence $\{x_n\}$ such that

$$A_{2n-1}x_{2n-2} = B_{2n-1}x_{2n-2} \quad \text{and} \quad A_{2n}x_{2n-1} = B_{2n+1}x_{2n}, \quad n \in \mathbb{N}. \quad (2.1)$$

First of all we shall show that $\{B_nx_{n-1}\}$ is a Cauchy sequence. By (2.1) and condition (a), we obtain that for all $n \in \mathbb{N}$

$$d(B_{2n-1}x_{2n-2}, B_{2n}x_{2n-1}) = d(A_{2n-2}x_{2n-3}, A_{2n-1}x_{2n-2})$$

$$\leq kd(B_{2n-2}x_{2n-3}, B_{2n-1}x_{2n-2}) = kd(A_{2n-3}x_{2n-4}, A_{2n-2}x_{2n-3})$$

$$\leq k^2d(B_{2n-3}x_{2n-4}, B_{2n-2}x_{2n-3}) \leq \ldots \leq k^{2n}d(B_1x_0, B_2x_1)$$

and similarly that

$$d(B_{2n}x_{2n-1}, B_{2n+1}x_{2n}) = d(A_{2n-1}x_{2n-2}, A_{2n}x_{2n-1})$$

$$\leq kd(B_{2n-1}x_{2n-2}, B_{2n}x_{2n-1}) \leq \ldots \leq k^{2n-1}d(B_1x_0, B_2x_1).$$
Since $0 < k < 1$, this implies that the sequence $\{B_n x_{n-1}\}$ is a Cauchy sequence. Thus $\{B_n x_{n-1}\}$ converges to some point v in M because M is complete. Now since each $B_q (q \in \mathbb{N})$ is continuous, we obtain that

$$B_{2m} v = B_{2m} \left(\lim_{n \to \infty} B_{2n+1} x_{2n+1} \right) = \lim_{n \to \infty} (B_{2m} B_{2n+1} x_{2n+1})$$

$$= \lim_{n \to \infty} (B_{2m} A_{2n+1} x_{2n+1}) = \lim_{n \to \infty} (A_{2n} B_{2m} x_{2n+1})$$

and similarly that $B_{2m+1} v = \lim_{n \to \infty} (A_{2n+1} B_{2m+1} x_{2n+1})$ and $B_{2m-1} v = \lim_{n \to \infty} (A_{2n-1} B_{2m-1} x_{2n-1})$. Hence by condition (c), we have

$$d(B_{2m} v, B_{2m+1} v) = \lim_{n \to \infty} d(A_{2m} B_{2m} x_{2n+1}, A_{2m+1} B_{2m+1} x_{2n+1})$$

$$\leq \lim_{n \to \infty} k d(B_{2m+1} B_{2m} x_{2n+1}, B_{2m+1} x_{2n+1})$$

$$= k d(B_{2m} v, B_{2m+1} v)$$

and $d(B_{2m} v, B_{2m-1} v) \leq k d(B_{2m} v, B_{2m-1} v)$ (m $\in \mathbb{N}$) in like manner, which implies that $B_m v = B_{m+1} v$ for all $m \geq 1$. Next we shall show that $A_n v = B_n v$ for all $n \leq 1$. By (2.1), conditions (b) and (c), we have

$$d(B_{2n+1} B_{2m+1} x_{2n+1}, A_{2n} v) = d(A_{2n+1} B_{2n+1} x_{2n+1}, A_{2n} v)$$

$$\leq k d(B_{2n} B_{2n+1} x_{2n+1}, A_{2n} v)$$

$$= k d(B_{2n} v, B_{2n+1} v)$$

Thus letting $m \to \infty$, we obtain that $d(B_{2n+1} v, A_{2n} v) \leq k d(B_{2n+1} v, B_{2n} v)$ from which it follows that $A_{2n} v = B_{2n+1} v$ for all $n \geq 1$. And since

$$d(A_{2n+1} v, A_{2n} v) \leq k d(B_{2n+1} v, B_{2n} v)$$

we obtain that $A_n v = A_{n+1} v = B_{n+1} v = B_n v$ for all $n \in \mathbb{N}$. Furthermore, for all $n \in \mathbb{N}$, we obtain

$$d(A_{2n} v, A_{2n-1} v) \leq k d(B_{2n} v, B_{2n-1} v)$$

and $d(A_{2n-1} v, A_{2n} v) \leq k d(B_{2n-1} v, B_{2n} v)$. Therefore we obtain $u = A_p(u) = B_p(u)$ for all $p \geq 1$ setting $u = A_n v$ because $0 < k < 1$.

Now we shall prove that u is a unique common fixed point of $\{A_p\}$ and $\{B_p\}$. If there exists another point w such that $w = A_p w = B_p w$ for all $p > 1$, then

$$d(u, w) = d(A_{2m-1}u, A_{2m}w) \leq kd(B_{2m-1}u, B_{2m}w)$$

$$\leq kd(u, w),$$

which is a contradiction since $0 < k < 1$. Therefore u is a unique common fixed point of two sequences of self-mappings $\{A_p\}$ and $\{B_p\}$. This completes the proof.

If $S = B_{2n-1}$ and $T = B_{2n}(n = 1, 2, ...)$, we obtain Theorem 1 as the corollary of Theorem A. Next we obtain the following theorem which is a generalization of Theorem 1 in [4].

THEOREM B. Let (M, d) be a complete metric space and let $\{T_p\}$ $(p = 1, 2, ...)$ be a sequence of mappings from M to M. Suppose that the following conditions as satisfied for all $m > n > 0$ and $x, y \in M$

(e) there exists a constant h ($h > 1$) such that

$$d(T_{2n-1}x, T_{2n}y) \geq hd(x, y)$$

and

$$d(T_{2n}x, T_{2n+1}y) \geq hd(x, y),$$

(f) $T_p T_q = T_q T_p$ (p, q are even or odd respectively).

If every T_n is continuous on M and $T_n(M) = M(n = 1, 2, ...)$, then there exists a unique fixed point for T_n.

PROOF. Set $A_n = I$ (I is the identity map from M to M) in Theorem A. The proof is complete.

REMARK 1. We remark that the mapping $f: X \to X$ in Theorem 1 of [4] is continuous from the condition of the theorem.

REFERENCES

Special Issue on
Intelligent Computational Methods for
Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today’s economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Deadline</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskkbai@cityu.edu.hk