NONLINEAR ERGODIC THEOREMS FOR A SEMITOPOLOGICAL SEMIGROUP OF NON-LIPSCHITZIAN MAPPINGS WITHOUT CONVEXITY

G. LI AND J. K. KIM

Received 2 February 1999

Let G be a semitopological semigroup, C a nonempty subset of a real Hilbert space H, and $\mathcal{S} = \{T_t : t \in G\}$ a representation of G as asymptotically nonexpansive type mappings of C into itself. Let $L(x) = \{z \in H : \inf_{s \in G} \sup_{t \in G} \|T_{ts} x - z\| = \inf_{t \in G} \|T_t x - z\|\}$ for each $x \in C$ and $L(\mathcal{S}) = \cap_{x \in C} L(x)$. In this paper, we prove that $\cap_{s \in G} \text{conv}\{T_{ts} x : t \in G\} \cap L(\mathcal{S})$ is nonempty for each $x \in C$ if and only if there exists a unique nonexpansive retraction P of C into $L(\mathcal{S})$ such that $PT_s = P$ for all $s \in G$ and $P(x) \in \text{conv}\{T_s x : s \in G\}$ for every $x \in C$. Moreover, we prove the ergodic convergence theorem for a semitopological semigroup of non-Lipschitzian mappings without convexity.

1. Introduction and preliminaries

Let H be a Hilbert space with norm $\|\cdot\|$ and inner product (\cdot, \cdot). Let G be a semitopological semigroup, that is, a semigroup with a Hausdorff topology such that for each $s \in G$ the mappings $s \mapsto s \cdot t$ and $s \mapsto t \cdot s$ of G into itself are continuous. Let C be a nonempty subset of H and let $\mathcal{S} = \{T_t : t \in G\}$ be a semigroup on C, that is, $T_{st}(x) = T_s T_t(x)$ for all $s, t \in G$ and $x \in C$. Recall that a semigroup \mathcal{S} is said to be

(a) nonexpansive if $\|T_t x - T_t y\| \leq \|x - y\|$ for $x, y \in C$ and $t \in G$.

(b) asymptotically nonexpansive [6] if there exists a function $k : G \mapsto [0, \infty)$ with $\inf_{s \in G} \sup_{t \in G} k_{ts} \leq 1$ such that $\|T_t x - T_t y\| \leq k_t \|x - y\|$ for $x, y \in C$ and $t \in G$.

(c) of asymptotically nonexpansive type [6] if for each x in C, there is a function $r(\cdot, x) : G \mapsto [0, \infty)$ with $\inf_{s \in G} \sup_{t \in G} r(ts, x) = 0$ such that $\|T_t x - T_t y\| \leq \|x - y\| + r(t, x)$ for all $y \in C$ and $t \in G$.

It is easily seen that (a)\Rightarrow(b)\Rightarrow(c) and that both the inclusions are proper (cf. [6, page 112]).

Baillon [1] proved the first nonlinear mean ergodic theorem for nonexpansive mappings in a Hilbert space: let C be a nonempty closed convex subset of a Hilbert space H and T a nonexpansive mapping of C into itself. If the set $F(T)$ of fixed points of T
is nonempty, then for each \(x \in C \), the Cesáro means

\[
S_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} T^k x
\]

converge weakly as \(n \to \infty \) to a point of \(F(T) \). In this case, putting \(y = P x \) for each \(x \in C \), \(P \) is a nonexpansive retraction of \(C \) onto \(F(T) \) such that \(PT = TP = P \) and \(P x \in \text{conv} \{ T^n x : n = 0, 1, 2, \ldots \} \) for each \(x \in C \), where \(\text{conv} A \) is the closure of the convex hull of \(A \). The analogous results are given for nonexpansive semigroups on \(C \) by Baillon [2] and Brezis-Browder [3]. In [10], Mizoguchi-Takahashi proved a nonlinear ergodic retraction theorem for Lipschitzian semigroups by using the notion of submean. Recently, Li and Ma [8, 9] proved the nonlinear ergodic retraction theorems for non-Lipschitzian semigroups in a Banach space without using the notion of submean. Also, in 1992, Takahashi [13] proved the ergodic theorem for nonexpansive semigroups on condition that \(\bigcap_{s \in G} \text{conv} \{ T_{st} x : t \in G \} \subset C \) for some \(x \in C \).

In this paper, without using the concept of submean, we prove nonlinear ergodic theorem for semitopological semigroup of non-Lipschitzian mappings without convexity in a Hilbert space. We first prove that if \(C \) is a nonempty subset of a Hilbert space \(H, G \) a semitopological semigroup, and \(\mathcal{S} = \{ T_t : t \in G \} \) a representation of \(G \) as asymptotically nonexpansive type mappings of \(C \) into itself, then \(\bigcap_{s \in G} \text{conv} \{ T_{st} x : t \in G \} \bigcap L(\mathcal{S}) \) is nonempty for each \(x \in C \) if and only if there exists a unique nonexpansive retraction \(P \) of \(C \) into \(L(\mathcal{S}) \) such that \(PT_s = P \) for all \(s \in G \) and \(P x \) is in the closed convex hull of \(\{ T_s x : s \in G \} \), where \(L(x) = \{ z : \inf_{s \in G} \sup_{t \in G} \| T_{ts} x - T_t x - z \| = \inf_{t \in G} \| T_t x - z \| \} \) and \(L(\mathcal{S}) = \bigcap_{x \in C} L(x) \). By using this result, we also prove the ergodic convergence theorem for semitopological semigroup of non-Lipschitzian mapping without convexity. Our results are generalizations and improvements of the previously known results of Brézis-Browder [3], Hirano-Takahashi [4], Mizoguchi-Takahashi [10], Takahashi-Zhang [14], and Takahashi [11, 12, 13] in many directions. Further, it is safe to say that in the results [1, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14], many key conditions are not necessary.

2. Ergodic convergence theorems

Throughout this paper, we assume that \(C \) is a nonempty subset of a real Hilbert space \(H, G \) a semitopological semigroup, and \(\mathcal{S} = \{ T_t : t \in G \} \) an asymptotically nonexpansive type semigroup on \(C \). For each \(x \in C \), define \(L(x) \) and \(L(\mathcal{S}) \) by

\[
L(x) = \left\{ z : \inf_{s \in G} \sup_{t \in G} \| T_{ts} x - z \| = \inf_{t \in G} \| T_t x - z \| \right\}, \quad L(\mathcal{S}) = \bigcap_{x \in C} L(x),
\]

respectively. We denote \(F(\mathcal{S}) \) by the set \(\{ x \in C : T_s(x) = x \text{ for all } s \in G \} \) of common fixed point of \(\mathcal{S} \). We begin with the following lemma.

Lemma 2.1. Let \(C \) be a nonempty subset of a Hilbert space \(H \) and \(\mathcal{S} = \{ T_t : t \in G \} \) an asymptotically nonexpansive type semigroup on \(C \). Then \(F(\mathcal{S}) \subset L(\mathcal{S}) \).
Proof. Let \(x \in C \) and \(f \in F(\mathcal{S}) \). Since \(\mathcal{S} \) is asymptotically nonexpansive type, for an arbitrary \(\varepsilon > 0 \), there exists \(s_0 \in G \) such that for all \(t \in G \)

\[
r(t s_0, f) < \varepsilon.
\]

(2.2)

Hence, for each \(a \in G \),

\[
\inf_{s \in G} \sup_{t \in G} \| T_{t s} x - f \| \leq \sup_{t \in G} \| T_{t s_0} x - f \| \leq \sup_{t \in G} \left(\| T_{a} x - f \| + r(t s_0, f) \right)
\]

\[
\leq \| T_{a} x - f \| + \varepsilon.
\]

(2.3)

Since \(\varepsilon > 0 \) is arbitrary, we have

\[
\inf_{s \in G} \sup_{t \in G} \| T_{t s} x - f \| \leq \inf_{t \in G} \| T_{t} x - f \|.
\]

This completes the proof. \(\square \)

Remark 2.2. It is not easy to prove that \(F(\mathcal{S}) \) is nonempty when \(C \) is not a convex subset. However, we can show that \(L(\mathcal{S}) \) is nonempty under some conditions and it is important for the ergodic convergence theorem.

The following proposition plays a crucial role in the proof of our main theorems in this paper.

Proposition 2.3. Let \(G \) be a semitopological semigroup, \(C \) a nonempty subset of a Hilbert space \(H \), and \(\mathcal{S} = \{ T_t : t \in G \} \) an asymptotically nonexpansive type semigroup on \(C \). Then, for every \(x \in C \), the set

\[
\bigcap_{s \in G} \text{conv} \{ T_{t s} x : t \in G \} \bigcap L(x),
\]

(2.4)

consists of at most one point.

Proof. Let \(u, v \in \bigcap_{s \in G} \text{conv} \{ T_{t s} x : t \in G \} \bigcap L(x) \), without loss of generality, we assume that

\[
\inf_{t \in G} \| T_t x - u \|^2 \leq \inf_{t \in G} \| T_t x - v \|^2.
\]

(2.5)

Now, for each \(t, s \in G \), since

\[
\| u - v \|^2 + 2 \langle T_{t s} x - u, u - v \rangle = \| T_{t s} x - v \|^2 - \| T_{t s} x - u \|^2,
\]

(2.6)

we have

\[
\| u - v \|^2 + 2 \inf_{t \in G} \langle T_{t s} x - u, u - v \rangle \geq \inf_{t \in G} \| T_{t s} x - v \|^2 - \sup_{t \in G} \| T_{t s} x - u \|^2,
\]

(2.7)

\[
\geq \inf_{t \in G} \| T_t x - v \|^2 - \sup_{t \in G} \| T_{t s} x - u \|^2.
\]

From \(u \in L(x) \), we have

\[
\| u - v \|^2 + 2 \sup_{s \in G} \inf_{t \in G} \langle T_{t s} x - u, u - v \rangle \geq \inf_{t \in G} \| T_t x - v \|^2 - \inf_{s \in G} \sup_{t \in G} \| T_{t s} x - u \|^2
\]

\[
= \inf_{t \in G} \| T_t x - v \|^2 - \inf_{t \in G} \| T_t x - u \|^2 \geq 0.
\]

(2.8)
Therefore, for \(\varepsilon > 0 \) there is an \(s_1 \in G \) such that
\[
\|u - v\|^2 + 2(T_{t s_1} x - u, u - v) > -\varepsilon \quad \forall t \in G.
\] (2.9)
From \(v \in \text{conv}\{T_{t s_1} x : t \in G\} \), we have
\[
\|u - v\|^2 + 2(v - u, u - v) \geq -\varepsilon.
\] (2.10)
This inequality implies that \(\|u - v\|^2 \leq \varepsilon \). Since \(\varepsilon > 0 \) is arbitrary, we have \(u = v \). This completes the proof. \(\Box \)

Remark 2.4. In the Takahashi-Zhang’s result [14], it is assumed that \(C \) is a closed convex subset, \(G \) a reversible semigroup, and \(\mathfrak{I} \) an asymptotically nonexpansive semigroup. Proposition 2.3 shows those key conditions are not necessary.

Let \(m(G) \) be the Banach space of all bounded real-valued functions on a semi-topological semigroup \(G \) with the supremum norm and let \(X \) be a subspace of \(m(G) \) containing constants. Then, an element \(\mu \) of \(X^\ast \) (the dual space of \(X \)) is called a mean on \(X \) if \(\|\mu\| = \mu(1) = 1 \). Let \(\mu \) be a mean on \(X \) and \(f \in X \). Then, according to time and circumstances, we use \(\mu_t (f(t)) \) instead of \(\mu(f) \).

For each \(s \in G \) and \(f \in m(G) \), we define elements \(l_s f \) and \(r_s f \) in \(m(G) \) given by \((l_s f)(t) = f(st) \) and \((r_s f)(t) = f(ts) \) for all \(t \in G \), respectively.

Throughout the rest of this section, let \(X \) be a subspace of \(m(G) \) containing constants invariant under \(l_s \) and \(r_s \) for each \(s \in G \). Furthermore, suppose that for each \(x \in C \) and \(y \in H \), a function \(f(t) = \|T_t x - y\|^2 \) is in \(X \). For \(\mu \in X^\ast \), we define the value \(\mu_t (T_t x, y) \) of \(\mu \) at this function. By Riesz theorem, there exists a unique element \(\mathfrak{I}_{\mu x} \) in \(X \) such that
\[
\mu_t (T_t x, y) = \langle \mathfrak{I}_{\mu x}, y \rangle \quad \forall y \in H.
\] (2.11)

Lemma 2.5. Suppose that \(X \) has an invariant mean \(\mu \). Then we have
\[
\bigcap_{s \in G} \text{conv}\{T_{t s} x : t \in G\} \bigcap L(x) = \{\mathfrak{I}_{\mu x}\} \quad \text{for every } x \in C.
\] (2.12)

Further, if \(T_t \) is continuous for each \(t \in G \) and \(\bigcap_{s \in G} \text{conv}\{T_{t s} x : t \in G\} \subset C \) for some \(x \in C \), then \(\mathfrak{I}_{\mu x} \in F(\mathfrak{I}) \).

Proof. Since \(\mu \) is an invariant mean, it is easy to show that \(\mathfrak{I}_{\mu x} \in \bigcap_{s \in G} \text{conv}\{T_{t s} x : t \in G\} \) for each \(x \in C \). By Proposition 2.3, it is enough to prove that \(\mathfrak{I}_{\mu x} \in L(x) \) for each \(x \in C \). To this end, let \(\varepsilon > 0 \), since \(\mathfrak{I} \) is an asymptotically nonexpansive type semigroup, for each \(t \in G \) there is an \(h_t \in G \) such that for each \(h \in G \),
\[
r(hh_t, T_t x) < \varepsilon.
\] (2.13)

Put \(M = \sup_{t, x \in G} \|T_t x - T_s x\| \), then we have
\[
\|T_{h_t x} - \mathfrak{I}_{\mu x}\|^2 - \|T_t x - \mathfrak{I}_{\mu x}\|^2 = \mu_s \left(\|T_{h_t t} x - T_t x\|^2 - \|T_t x - T_s x\|^2 \right)
\] (2.14)
\[
= \mu_s \left(\|T_{h_t t} x - T_{h_t s} x\|^2 - \|T_t x - T_s x\|^2 \right)
\]
\[
\leq 2M \varepsilon \quad \text{for each } h \in G.
\]
Hence, we have
\[
\inf_{s \in G} \sup_{h \in G} \| T_{hs} x - \mathcal{N}_{\mu} x \|^2 \leq \| T_t x - \mathcal{N}_{\mu} x \|^2 + 2M \varepsilon \quad \forall t \in G.
\] (2.15)

Since \(\varepsilon > 0 \) is arbitrary, we have \(\mathcal{N}_{\mu} x \in L(x) \). Finally, suppose that \(\bigcap_{s \in G} \text{conv} \{ T_{st} x : t \in G \} \subseteq C \) and each \(T_t \) is continuous from \(C \) into itself. Then, we can easily prove that \(\mathcal{N}_{\mu} x \in \bigcap_{s \in G} \text{conv} \{ T_{st} x : t \in G \} \) and hence we have \(\mathcal{N}_{\mu} x \in C \). For each \(h \in G \) and \(\varepsilon \in (0, 1) \), there exists \(0 < \delta < \varepsilon \) such that \(\| T_t y - T_h \mathcal{N}_{\mu} x \| < \varepsilon \) whenever \(y \in C \) and \(\| y - \mathcal{N}_{\mu} x \| \leq \delta \). Since \(\mathcal{N} \) is an asymptotically nonexpansive type semigroup, there is \(s_0 \in G \) such that
\[
r(t, \mathcal{N}_{\mu} x) < \frac{1}{2(M_1 + 1)} \delta^2 \quad \forall t \in G,
\] (2.16)

where \(M_1 = \sup_{t \in G} \| T_t x - \mathcal{N}_{\mu} x \| \). Then for each \(t, s \in G \), we have
\[
\| T_{ss_0} \mathcal{N}_{\mu} x - \mathcal{N}_{\mu} x \|^2 + 2(T_t x - \mathcal{N}_{\mu} x, T_{ss_0} \mathcal{N}_{\mu} x - T_{ss_0} \mathcal{N}_{\mu} x)
\]
\[
= \| T_t x - T_{ss_0} \mathcal{N}_{\mu} x \|^2 - \| T_t x - \mathcal{N}_{\mu} x \|^2
\]
\[
= \| T_{ss_0} x - T_{ss_0} \mathcal{N}_{\mu} x \|^2 - \| T_t x - \mathcal{N}_{\mu} x \|^2 - \| T_{ss_0} x - T_{ss_0} \mathcal{N}_{\mu} x \|^2 + \| T_t x - T_{ss_0} \mathcal{N}_{\mu} x \|^2
\]
\[
\leq \delta^2 - \| T_{ss_0} x - T_{ss_0} \mathcal{N}_{\mu} x \|^2 + \| T_t x - T_{ss_0} \mathcal{N}_{\mu} x \|^2.
\] (2.17)

It follows that
\[
\| T_{ss_0} \mathcal{N}_{\mu} x - \mathcal{N}_{\mu} x \| \leq \delta \quad \forall s \in G.
\] (2.18)

This implies that
\[
\| T_h \mathcal{N}_{\mu} x - \mathcal{N}_{\mu} x \| \leq \| T_h \mathcal{N}_{\mu} x - T_h T_{ss_0} \mathcal{N}_{\mu} x \|^2 + \| T_{ss_0} \mathcal{N}_{\mu} x - \mathcal{N}_{\mu} x \| < 2\varepsilon.
\] (2.19)

Since \(\varepsilon > 0 \) is arbitrary, we have \(T_h \mathcal{N}_{\mu} x = \mathcal{N}_{\mu} x \). This completes the proof. \(\square \)

Now, we prove a nonlinear ergodic theorem for asymptotically nonexpansive type semigroups without convexity. Before doing this, we give a definition concerning means. Let \(\{ \mu_\alpha : \alpha \in A \} \) be a net of means on \(X \), where \(A \) is a directed set. Then \(\{ \mu_\alpha : \alpha \in A \} \) is said to be asymptotically invariant if for each \(f \in X \) and \(s \in G \),
\[
\mu_\alpha (f) - \mu_\alpha (l_s f) \longrightarrow 0, \quad \mu_\alpha (f) - \mu_\alpha (r_s f) \longrightarrow 0.
\] (2.20)

Theorem 2.6. Let \(C \) be a nonempty subset of a Hilbert space \(H \), \(X \) an invariant subspace of \(m(G) \) containing constants, and \(\mathcal{N} = \{ T_t : t \in G \} \) an asymptotically nonexpansive type semigroup on \(C \). If for each \(x \in C \) and \(y \in H \), the function \(f \) on \(G \) defined by \(f(t) = \| T_t x - y \|^2 \) belong to \(X \), then for an asymptotically invariant net \(\{ \mu_\alpha : \alpha \in A \} \) on \(X \), the net \(\{ \mathcal{N}_{\mu} x \}_\alpha \) converges weakly to an element \(x_0 \in L(x) \).
Further, if T_t is continuous for each $t \in G$ and $\bigcap_{s \in G} \text{conv}\{T_{st}x : t \in G\} \subset C$, then $x_0 \in F(\mathcal{I})$.

Proof. Let W be the set of all weak limit points of subnet of the net $\{\mathcal{I}_{\mu_\alpha}x : \alpha \in \Lambda\}$. By Proposition 2.3, it is enough to prove that

$$W \subset \bigcap_{s \in G} \text{conv}\{T_{ts}x : t \in G\} \cap L(x). \quad (2.21)$$

To show this, let $z \in W$ and let $\{\mathcal{I}_{\mu_{\alpha\beta}}x\}$ be a subnet of $\{\mathcal{I}_{\mu_\alpha}x\}$ such that $\{\mathcal{I}_{\mu_{\alpha\beta}}x\}$ converges weakly to z. Now, without loss of generality, we can suppose that $\{\mathcal{I}_{\mu_{\alpha\beta}}x\}$ converges weakly* to $\mu \in X^*$. It is easily seen that μ is an invariant mean on X and then Lemma 2.5 implies that $z = \mathcal{I}_\mu x \in \bigcap_{s \in G} \text{conv}\{T_{ts}x : t \in G\} \cap L(x)$. This completes the proof. \[\square\]

Let $C(G)$ be the Banach space of all bounded continuous real-valued functions on G and let $RUC(G)$ be the space of all bounded right uniformly continuous functions on G, that is, all $f \in C(G)$ such that the mapping $s \mapsto r_s f$ is continuous. Then $RUC(G)$ is a closed subalgebra of $C(G)$ containing constants and invariant under l_s and r_s.

As a direct consequence of Theorem 2.6, we obtain the following corollary.

Corollary 2.7 (see [13]). Let C be a nonempty subset of a Hilbert space H and let G be a semitopological semigroup such that $RUC(G)$ has an invariant mean. Let $\mathcal{I} = \{T_t : t \in G\}$ be a nonexpansive semigroup on C such that $T_t x : t \in G$ is bounded and $\bigcap_{s \in G} \text{conv}\{T_{ts}x : t \in G\} \subset C$ for some $x \in C$. Then, $F(\mathcal{I}) \neq \emptyset$. Further, for an asymptotically invariant net $\{\mu_\alpha\}_{\alpha \in \Lambda}$ of means on $RUC(G)$, the net $\{\mathcal{I}_{\mu_\alpha}x\}_{\alpha \in \Lambda}$ converges weakly to an element $x_0 \in F(\mathcal{I})$.

Remark 2.8. For the proof of Corollary 2.7, Takahashi [13] used the condition $\bigcap_{s \in G} \text{conv}\{T_{ts}x : t \in G\} \subset C$. But, from Theorem 2.6, we can prove the result without this condition except proving the fact that the weak limit of $\{\mathcal{I}_{\mu_\alpha}x\}$ is in $F(\mathcal{I})$.

3. Nonexpansive retractions

In this section, we prove an ergodic retraction theorem for a semitopological semigroup of asymptotically nonexpansive type mappings without convexity.

Theorem 3.1. Let C be a nonempty subset of a Hilbert space H and let $\mathcal{I} = \{T_t : t \in G\}$ be a semitopological semigroup of asymptotically nonexpansive type mappings on C such that $L(\mathcal{I}) \neq \emptyset$. Then the following statements are equivalent:

(a) $\bigcap_{s \in G} \text{conv}\{T_{ts}x : t \in G\} \cap L(\mathcal{I}) \neq \emptyset$ for each $x \in C$.

(b) There is a unique nonexpansive retraction P of C into $L(\mathcal{I})$ such that $PT_t = P$ for every $t \in G$ and $Px \in \text{conv}\{T_{t}x : t \in G\}$ for every $x \in C$.

Proof. (b) \Rightarrow (a). Let $x \in C$, then $Px \in L(\mathcal{I})$. Also $Px \in \bigcap_{s \in G} \text{conv}\{T_{ts}x : t \in G\}$. In fact, for each $s \in G$, $Px = PT_s x \in \text{conv}\{T_{ts}x : t \in G\} = \text{conv}\{T_{ts}x : t \in G\}$.

(a)⇒(b). Let \(x \in C \). Then by Proposition 2.3, \(\cap_{s \in G} \text{conv}\{ T_{ts} x : t \in G \} \cap L(\mathfrak{F}) \) contains exactly one point \(P x \). For each \(a \in G \), we have

\[
\{ P T_a x \} = \cap_{s \in G} \text{conv}\{ T_{tsa} x : t \in G \} \cap L(\mathfrak{F}) \supseteq \cap_{s \in G} \text{conv}\{ T_{ts} x : t \in G \} \cap L(\mathfrak{F}) = \{ P x \}
\]

(3.1)

and hence we have \(P T_a = P \) for every \(a \in G \).

Finally, we have to show that \(P \) is nonexpansive. Let \(x, y \in C \) and \(0 < \lambda < 1 \). Then for any \(\varepsilon > 0 \), there exists \(s_1 \in G \) such that

\[
\sup_{t \in G} \| T_{ts_1} x - Py \| \leq \inf_{t \in G} \| T_t x - Py \| + \varepsilon,
\]

(3.2)

from \(Py \in L(\mathfrak{F}) \). Hence, we have

\[
\| \lambda T_{ts_1} x + (1 - \lambda) Px - Py \|^2 \\
= \| \lambda (T_{ts_1} x - Py) + (1 - \lambda) (Px - Py) \|^2 \\
= \lambda \| T_{ts_1} x - Py \|^2 + (1 - \lambda) \| Px - Py \|^2 - \lambda (1 - \lambda) \| T_{ts_1} x - Px \|^2 \\
\leq \lambda (\| T_{ab} x - Py \|^2 + \varepsilon)^2 + (1 - \lambda) \| Px - Py \|^2 - \lambda (1 - \lambda) \inf_{t \in G} \| T_t x - Px \|^2.
\]

(3.3)

for each \(t, s, a, b \in G \). Since \(\varepsilon > 0 \) is arbitrary, this implies

\[
\inf_{s \in G} \sup_{t \in G} \| \lambda T_{ts} x + (1 - \lambda) Px - Py \|^2 \\
\leq \lambda \| T_{ab} x - Py \|^2 + (1 - \lambda) \| Px - Py \|^2 - \lambda (1 - \lambda) \inf_{t \in G} \| T_t x - Px \|^2 \\
= \| \lambda T_{ab} x + (1 - \lambda) Px - Py \|^2 + \lambda (1 - \lambda) \| T_{ab} x - Px \|^2 - \lambda (1 - \lambda) \inf_{t \in G} \| T_t x - Px \|^2.
\]

(3.4)

Then it is easily seen that

\[
\inf_{s \in G} \sup_{t \in G} \| \lambda T_{ts} x + (1 - \lambda) Px - Py \|^2 - \lambda (1 - \lambda) \inf_{t \in G} \inf_{b \in G} \sup_{a \in G} \| T_{ab} x - Px \|^2 \\
\leq \sup_{b \in G} \sup_{a \in G} \| \lambda T_{ab} x + (1 - \lambda) Px - Py \|^2 - \lambda (1 - \lambda) \inf_{t \in G} \| T_t x - Px \|^2.
\]

(3.5)

Since \(Px \in L(\mathfrak{F}) \), we have

\[
\inf_{s \in G} \sup_{t \in G} \| \lambda T_{ts} x + (1 - \lambda) Px - Py \|^2 \leq \inf_{s \in G} \sup_{t \in G} \| \lambda T_{ts} x + (1 - \lambda) Px - Py \|^2.
\]

(3.6)

Let

\[
h(\lambda) = \inf_{s \in G} \sup_{t \in G} \| \lambda T_{ts} x + (1 - \lambda) Px - Py \|^2.
\]

(3.7)
Then for any $\varepsilon > 0$, there exists $s_2 \in G$ such that for all $t \in G$,
\[
\|\lambda T_{ts_2}x + (1 - \lambda)Px - Py\|^2 \leq h(\lambda) + \varepsilon
\]
(3.8)
and hence
\[
(\lambda T_{ts_2}x + (1 - \lambda)Px - Py, Px - Py) \leq (h(\lambda) + \varepsilon)^{1/2}\|Px - Py\| \quad \forall t \in G.
\]
(3.9)
From $Px \in \text{conv}\{T_{ts_2}x : t \in G\}$, we have
\[
(\lambda Px + (1 - \lambda)Px - Py, Px - Py) \leq (h(\lambda) + \varepsilon)^{1/2}\|Px - Py\|.
\]
(3.10)
Since $\varepsilon > 0$ is arbitrary, this yields that
\[
\|Px - Py\|^2 \leq h(\lambda).
\]
(3.11)
That is,
\[
\|Px - Py\|^2 \leq \inf_{s \in G} \sup_{t \in G} \|\lambda T_{ts}x + (1 - \lambda)Px - Py\|^2.
\]
(3.12)
Now, one can choose an $s_3 \in G$ such that $\|T_{ts_3}x - Px\| \leq M$ for all $t \in G$, where $M = 1 + \inf_{t \in G} \|T_t x - Px\|$. Then, we have
\[
\|\lambda T_{ts_3}x + (1 - \lambda)Px - Py\|^2
\]
\[
= \|\lambda (T_{ts_3}x - Px) + (Px - Py)\|^2
\]
\[
= \lambda^2 \|T_{ts_3}x - Px\|^2 + \|Px - Py\|^2 + 2\lambda (T_{ts_3}x - Px, Px - Py)
\]
\[
\leq M^2\lambda^2 + \|Px - Py\|^2 + 2\lambda (T_{ts_3}x - Px, Px - Py).
\]
(3.13)
It then follows from (3.6) and (3.12) that
\[
2\lambda \sup_{s \in G} \inf_{t \in G} (T_{ts}x - Px, Px - Py)
\]
\[
\geq 2\lambda \sup_{s \in G} \inf_{t \in G} (T_{ts_3}x - Px, Px - Py)
\]
\[
\geq \sup_{s \in G} \inf_{t \in G} \|\lambda T_{ts}x + (1 - \lambda)Px - Py\|^2 - \|Px - Py\|^2 - M^2\lambda^2
\]
\[
= \sup_{s \in G} \inf_{t \in G} \|\lambda T_{ts}x + (1 - \lambda)Px - Py\|^2 - \|Px - Py\|^2 - M^2\lambda^2
\]
\[
\geq \|PT_{s_3}x - Py\|^2 - \|Px - Py\|^2 - M^2\lambda^2
\]
\[
= -M^2\lambda^2.
\]
(3.14)
Hence, we have
\[
\sup_{s \in G} \inf_{t \in G} (T_{ts}x - Px, Px - Py) \geq -\frac{1}{2}M^2\lambda.
\]
(3.15)
Letting $\lambda \to 0$, then we have
\[
\sup_{s \in G} \inf_{t \in G} (T_{ts}x - Px, Px - Py) \geq 0.
\]
(3.16)
Let $\varepsilon > 0$, then there is $s_4 \in G$ such that
\[
\forall t \in G.
\]
For such an $s_4 \in G$, from (3.16), we have
\[
\sup_{s \in G} \inf_{t \in G} \left(T_{ts}T_{s_4}x - PT_{s_4}x, PT_{s_4}x - Py \right) \geq 0
\]
and hence there is $s_5 \in G$ such that
\[
\inf_{t \in G} \left(T_{ts}T_{s_4}x - PT_{s_4}x, PT_{s_4}x - Py \right) > -\varepsilon.
\]
Then, from $PT_{s_4}x = Px$, we have
\[
\inf_{t \in G} \left(T_{ts}T_{s_5}T_{s_4}x - Px, Px - Py \right) > -\varepsilon.
\]
Similarly, from (3.16), we also have
\[
\sup_{s \in G} \inf_{t \in G} \left(T_{ts}T_{s_5}T_{s_4}y - PT_{s_5}T_{s_4}y, PT_{s_5}T_{s_4}y - Px \right) \geq 0,
\]
and there exists $s_6 \in G$ such that
\[
\inf_{t \in G} \left(T_{ts}T_{s_5}T_{s_4}y - PT_{s_5}T_{s_4}y, PT_{s_5}T_{s_4}y - Px \right) \geq -\varepsilon,
\]
that is,
\[
\inf_{t \in G} \left(Py - T_{ts_6}T_{s_5}T_{s_4}y, Px - Py \right) \geq -\varepsilon.
\]
On the other hand, from (3.20)
\[
\inf_{t \in G} \left(T_{ts_6}T_{s_5}T_{s_4}x - Px, Px - Py \right) > -\varepsilon.
\]
Combining (3.23) and (3.24), we have
\[
-2\varepsilon < \left(T_{ts_6}T_{s_5}T_{s_4}x - T_{ts_6}T_{s_5}T_{s_4}y, Px - Py \right) - \| Px - Py \|^2 \\
\leq \| T_{ts_6}T_{s_5}T_{s_4}x - T_{ts_6}T_{s_5}T_{s_4}y \| \cdot \| Px - Py \| - \| Px - Py \|^2 \\
\leq \left(r \left(ts_6T_{s_5}T_{s_4}, x \right) + \| x - y \| \right) \cdot \| Px - Py \| - \| Px - Py \|^2 \\
\leq \left(\varepsilon + \| x - y \| \right) \cdot \| Px - Py \| - \| Px - Py \|^2.
\]
Since $\varepsilon > 0$ is arbitrary, this implies $\| Px - Py \| \leq \| x - y \|$. The proof is completed.

Using Lemma 2.1, we have the following ergodic retraction theorem for asymptotically nonexpansive type semigroups.

Theorem 3.2. Let C be a nonempty subset of a real Hilbert space H and let $\mathcal{S} = \{ T_t : t \in G \}$ be a semitopological semigroup of asymptotically nonexpansive type mappings on C such that $F(\mathcal{S}) \neq \emptyset$. Then the following statements are equivalent:

(a) $\bigcap_{t \in G} \text{conv}(T_{ts}x : t \in G) \cap F(\mathcal{S}) \neq \emptyset$ for each $x \in C$.

(b) There is a unique nonexpansive retraction P of C onto $F(\mathcal{S})$ such that $PT_t = T_tP = P$ for every $t \in G$ and $P \in \text{conv}(T_{ts}x : t \in G)$ for every $x \in C$.
We denote by $B(G)$ the Banach space of all bounded real-valued functions on G with supremum norm. Let X be a subspace of $B(G)$ containing constants. Then, according to Mizoguchi-Takahashi [10], a real-valued function μ on X is called a submean on X if the following conditions are satisfied:

1. $\mu(f + g) \leq \mu(f) + \mu(g)$ for every $f, g \in X$;
2. $\mu(\alpha f) = \alpha \mu(f)$ for every $f \in X$ and $\alpha \geq 0$;
3. for $f, g \in X$, $f \leq g$ implies $\mu(f) \leq \mu(g)$;
4. $\mu(c) = c$ for every constant c.

The following corollaries are immediately deduced from Theorem 3.2.

Corollary 3.3 (see [10]). Let C be a closed convex subset of a Hilbert space H and let X be an r_s-invariant subspace of $B(G)$ containing constants which has a right invariant submean. Let $\mathcal{S} = \{T_t : t \in G\}$ be a Lipschitzian semigroup on C with $\inf_s \sup_t k_{ts}^2 \leq 1$ and $F(\mathcal{S}) \neq \emptyset$, where k_t is the Lipschitzian constants. If for each $x, y \in C$, the function f on G defined by

$$f(t) = \|T_t x - y\|^2 \quad \forall t \in G \quad (3.26)$$

and the function g on G defined by

$$g(t) = k_t^2 \quad \forall t \in G \quad (3.27)$$

belong to X, then the following statements are equivalent:

(a) $\bigcap_{t \in G} \text{conv} \{T_{ts} x : t \in G\} \cap F(\mathcal{S}) \neq \emptyset$ for each $x \in C$.

(b) There is a nonexpansive retraction P of C onto $F(\mathcal{S})$ such that $P T_t = T_t P = P$ for every $t \in G$ and $P x \in \text{conv} \{T_t x : t \in G\}$ for every $x \in C$.

Corollary 3.4 (see [7]). Let C be a nonempty closed convex subset of a Hilbert space H and let $\mathcal{S} = \{T_t : t \in G\}$ be a continuous representation of a semitopological semigroup as nonexpansive mappings from C into itself. If for each $x \in C$, the set $\bigcap_{t \in G} \text{conv} \{T_{ts} x : t \in G\} \cap F(\mathcal{S}) \neq \emptyset$, then there exists a nonexpansive retraction P of C onto $F(\mathcal{S})$ such that $P T_t = T_t P = P$ for every $t \in G$ and $P x \in \text{conv} \{T_t x : t \in G\}$ for every $x \in C$.

Remark 3.5. By Theorem 3.2, many key conditions, in Corollaries 3.3 and 3.4, such as C is convex closed subset and \mathcal{S} is continuous Lipschitzian semigroup, are not necessary.

Acknowledgement

The authors wish to acknowledge the financial support of the Korea Research Foundation made in the program year of 1998.
References

G. Li: DEPARTMENT OF MATHEMATICS, YANGZHOU UNIVERSITY, YANGZHOU 225002, CHINA

E-mail address: ligang@cims1.yzu.edu.cn

J. K. Kim: DEPARTMENT OF MATHEMATICS, KYUNGNAM UNIVERSITY, MASAN, KYUNGNAM 631-701, KOREA

E-mail address: jongkyuk@kyungnam.ac.kr
Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Deadline</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>September 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied Mathematics and Computing, Institute of Geosciences and Exact Sciences, State University of São Paulo at Rio Claro, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com