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1. Introduction and Model Formulation

In ecology, one of main goals is to understand the dynamical relationship between predator
and prey. Such relationship can be represented by the functional response which refers to the
change in the density of prey attached per unit time per predator as the prey density changes.
One of well-known functional responses is Beddington-DeAngelis functional response
introduced by Beddington [1] and DeAngelis et al. [2], independently. It is similar to Holling
type II functional response but contains an extra term describing mutual interference by
predators. In fact, there are much significant evidences to suggest that functional responses
with predator interference occur quite frequently in laboratory and natural systems [3]. Thus,
we can establish a predator-prey model with Beddington-DeAngelis functional response as
the following form [1, 4, 5]:

x′(t) = rx(t)
(

1 − x(t)
K

)
− ax(t)y(t)
by(t) + x(t) + c

,

y′(t) = −dy(t) + eax(t)y(t)
by(t) + x(t) + c

,

(1.1)



2 Abstract and Applied Analysis

where x(t), y(t) represent the population densities of prey and predator at time t, respectively.
In this system, the prey grows according to a logistic growth with intrinsic growth rate r and
K is called the carrying capacity of the prey. For parameters setting, a is the per-capita rates of
predation of the predator, the constants e, d are the conversion rate and the death rate of the
predator, respectively, and the term by measures the mutual interference between predators.

It is necessary and important to consider models with periodic ecological parameters
which might be quite naturally exposed such as those due to seasonal effects of weather or
food supply [6]. Thus when the environmental factors that affect various parameters of the
ecological model fluctuate periodically, then the corresponding parameters should be taken
as periodic functions of time [7]. There are a number of ways to apply periodic perturbation in
ecological models. Especially, one of the most popular ways to describe periodic phenomena
is to use the sine (or cosine) wave or sinusoid function which describes a wave-like function
of time with peak deviation from center and angular frequency [8–15]. Thus we consider the
intrinsic growth rate r in system (1.1) as periodically varying function of time due to seasonal
variation and adopt the sine wave as mentioned above to investigate the seasonality on the
system. In fact the seasonality is superimposed as follows:

r0 = r(1 + ε sin(ωt)), (1.2)

where the parameter ε represents the degree of seasonality; λ = rε is the magnitude of the
perturbation in r0, ω is the angular frequency of the fluctuation caused by seasonality. Since
r0 is assumed to be positive, we have 0 ≤ ε ≤ 1. With this idea of periodic forcing, we consider
the following predator-prey system with periodic variation in the intrinsic growth rate of the
prey:

x′(t) = rx(t)
(

1 − x(t)
K

)
− ax(t)y(t)
by(t) + x(t) + c

+ λx(t) sin(ωt),

y′(t) = −dy(t) + eax(t)y(t)
by(t) + x(t) + c

,

(1.3)

where λ and ω represent the magnitude and frequency of the forcing term, respectively.
Of course, a number of researchers [14, 16, 17] have studied that dynamical systems with
simple dynamic behavior in the constant parameter case display very complex behavior
including chaos when they are periodically perturbed. In this context, in Section 2 we
illustrate numerical simulations for system (1.3) to show the existence of limit circles and
various kinds of dynamical behaviors including chaos. For this reason, system (1.3) reflects
more realistic situation than system (1.1).

There are still some other periodic perturbations such as fire, flood, and mating
habits or harvesting seasons which are not suitable to be considered continually. Suppose
that with the pest outbreak, for example, there are many ways to beat agricultural pests.
One of important ways is biological control leading reduction in pest population from
the actions of other living organisms, often called natural enemies or beneficial species.
As we know, anther important method for pest control is chemical control. Pesticides can
reduce farmer’s financial losses by preventing crop losses to insects and other pests. Such
control tactics should be used not continuously but impulsively. There are many literatures
on systems dealing with impulsive controls [10, 11, 13–15, 18–21]. Thus, we consider the
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following predator-prey system with adding periodic constant impulsive immigration of the
predator regarded as natural enemy of the prey (pest) to system (1.3) and spraying pesticides
(harvesting) on all species at the same times

x′(t) = rx(t)
(

1 − x(t)
K

)
− ax(t)y(t)
by(t) + x(t) + c

+ λx(t) sin(ωt),

y′(t) = −dy(t) + eax(t)y(t)
by(t) + x(t) + c

, t /=nτ,

x(t+) =
(
1 − p1

)
x(t), t = nτ,

y(t+) =
(
1 − p2

)
y(t) + q,

(
x(0+), y(0+)

)
=
(
x0, y0

)
,

(1.4)

where τ is the period of the impulsive immigration or stock of the predator, 0 ≤ p1, p2 < 1
present the fraction of the prey and the predator which die due to the harvesting or pesticides,
and so forth, and q > 0 is the size of immigration or stock of the predator.

If we take b = 0, system (1.4) can be expressed as the Holling-type II predator-prey
system with impulsive perturbations and seasonal effects as follows:

x′(t) = rx(t)
(

1 − x(t)
K

)
− ax(t)y(t)

x(t) + c
+ λx(t) sin(ωt), t /=nτ,

y′(t) = −dy(t) + eax(t)y(t)
x(t) + c

,

x(t+) =
(
1 − p1

)
x(t), t = nτ,

y(t+) =
(
1 − p2

)
y(t) + q,

(
x(0+), y(0+)

)
=
(
x0, y0

)
.

(1.5)

While if c = 0, then system (1.4) can be expressed as the ratio-dependent predator-prey
system with impulsive perturbations and seasonal effects as follows:

x′(t) = rx(t)
(

1 − x(t)
K

)
− ax(t)y(t)
by(t) + x(t)

+ λx(t) sin(ωt), t /=nτ,

y′(t) = −dy(t) + eax(t)y(t)
by(t) + x(t)

,

x(t+) =
(
1 − p1

)
x(t), t = nτ,

y(t+) =
(
1 − p2

)
y(t) + q,

(
x(0+), y(0+)

)
=
(
x0, y0

)
.

(1.6)

We will investigate system (1.4) together with systems (1.5) and (1.6). Impulsive differential
equations such as (1.4) are found in almost every domain of applied science and have
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Figure 1: Bifurcation diagrams of system (1.3). (a) x is plotted for λ, (b) y is plotted for λ.

been studied in many investigations [10, 11, 14, 16, 17]. Especially, Zhang and Chen [15]
considered system (1.4) when p2, λ = 0. They investigated abundance of complex dynamics
for system (1.4) when p2, λ = 0 and suggested a more executable way for observing chaos and
coexistence of attractors. They also gave a threshold that classifies between the permanence
and the stability of prey-free solutions for system (1.4). However, in case p2, λ/= 0, system (1.4)
has not been studied yet. Thus, the purpose of this paper is to find conditions for the stability
of prey-free periodic solutions. Also, we show that the system is permanent under some
conditions. In addition, using numerical simulations various kinds of dynamical phenomena
are discussed in Section 4.

2. Numerical Analysis of System (1.3)

In this section we will numerically study the influence of the seasonality parameter λ on
system (1.3). For this, we fix parametersω = 2π , a = 3.2118, b = 0.0246, c = 3.3667, d = 3.7798,
e = 3.3189, r = 2.3553, K = 9.7016 and we choose (x0, y0) = (1, 1) as an initial point. It follows
from [16] that system (1.3) with these parameters has a unique stable limit cycle when λ = 0.
Since the corresponding continuous system (1.3) cannot be solved explicitly and system
(1.3) cannot be rewritten as equivalent difference equations, it is difficult to study them
analytically. However, the influence of λ may be documented by stroboscopically sampling
one of the variables over a range of λ values. Thus we numerically integrate system (1.3) and
seek the behavior of the solutions. The bifurcation diagram provides a summary of essential
dynamical behavior of system. Indeed the points that are plotted will represent either fixed
or periodic sinks or other attracting sets including chaos. It shows the birth, evolution, and
death of the attracting sets. In Figure 1, we illustrate bifurcation diagrams of system (1.3) to
examine significant changes in the set of fixed or periodic points or other sets of interest. As
is evident from Figures 1 and 2, the solutions are still periodic for values of λ in the range
0 ≤ λ < λ1(≈1.5) and quasiperiodic motions appear when λ > λ1 (see Figure 2(b)). Periodic
windows are intermittently scattered. Also Figures 3(a) and 3(b) show the route to chaos
through the cascade of period doubling. Moreover, although the magnitude λ of seasonality
increases, the solutions are stable and even they become periodic cycles like case λ = 0 after
λ > λ2(≈5.6) (see Figure 3(c)). We can also catch sight of the existence of occurrences of
sudden changes in Figure 1 when λ ≈ 0.84, 1.04, 1.25, 3.26, 3.9, and so forth. They can lead
to nonunique attractors. For example, there exist at least three different attractors according
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Figure 2: Phase portraits of solutions for system (1.3). (a) λ = 1.4 (a 3τ-periodic solution), (b) λ = 1.7.
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Figure 3: Phase portraits of solutions for system (1.3). (a) λ = 2.6 (a 2τ-periodic solution), (b) λ = 4.8
(chaotic motion), (c) λ = 6.0 (a τ-periodic solution).

to initial values when λ = 3.9 (see Figure 4). This result shows that the seasonality in just one
parameter can give rise to multiple attractors. Thus, these numerical examples show that the
dynamical behavior of system (1.3) is more abundant than that of system (1.1).

3. Mathematical Analysis

In this section we give some notations, definitions, and lemmas which will be useful for our
main results.

Denote N the set of all of nonnegative integers, R+ = [0,∞), R
∗
+ = (0,∞), R

2
+ = {x =

(x, y) ∈ R
2 : x, y ≥ 0}, and f = (f1, f2)

T the right-hand side of system (1.4). Let V : R+ ×R
2
+ →

R+, then V is said to be in a class V0 if

(1) V is continuous on (nτ, (n+1)τ]×R
2
+, and lim(t,y)→ (nτ,x),t>nτV (t,y) = V (nτ+, x) exists;

(2) V is locally Lipschitzian in x.
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Figure 4: Coexistence of solutions when λ = 3.9, and (a) (x0, y0) = (1, 1), (b) (1.54, 1.65), and (c) (4.79, 1.43),
respectively.

Definition 3.1. Let V ∈ V0, (t, x) ∈ (nτ, (n + 1)τ] × R
2
+. The upper right derivatives of V (t, x)

with respect to the impulsive differential system (1.4) are defined as

D+V (t, x) = lim sup
h→ 0+

1
h

[
V
(
t + h, x + hf(t, x)

) − V (t, x)
]
. (3.1)

Remark 3.2. (1) The solution of system (1.4) is a piecewise continuous function x : R+ → R
2
+;

that is, x(t) is continuous on (nτ, (n + 1)τ], n ∈ N, and x(nτ+) = limt→nτ+x(t) exists. (2) The
smoothness properties of f guarantee the global existence and uniqueness of the solutions of
system (1.4) (see [22] for the details).

Definition 3.3. System (1.3) is said to be permanent if there exist positive constants m, M,
and T0 such that every positive solution (x(t), y(t)) of system (1.4) with x0, y0 > 0 satisfies
m ≤ x(t) ≤M and m ≤ y(t) ≤M for t > T0.

We will use the following important comparison theorem on an impulsive differential
equation [22].

Lemma 3.4 (see [22]). Suppose V ∈ V0 and

D+V (t, x) ≤ g(t, V (t, x)), t /=nτ,

V (t, x(t+)) ≤ ψn(V (t, x)), t = nτ,
(3.2)

then g : R+ × R+ → R is continuous on (nτ, (n + 1)τ] × R+ and for u(t) ∈ R+, n ∈ N,
lim(t,y)→ (nτ+,u)g(t, y) = g(nτ+, u) exists, ψn : R+ → R+ is nondecreasing. Let r(t) be the maximal
solution of the scalar impulsive differential equation

u′(t) = g(t, u(t)), t /=nτ,

u(t+) = ψn(u(t)), t = nτ,

u(0+) = u0,

(3.3)
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existing on [0,∞). Then V (0+, x0) ≤ u0 implies that V (t, x(t)) ≤ r(t), t ≥ 0, where x(t) is any
solution of (3.2).

We now indicate a special case of Lemma 3.4 which provides estimations for the
solution of impulsive differential inequalities. For this, we let PC(R+,R)(PC1(R+,R)) denote
the class of real piecewise continuous (real piecewise continuously differentiable) functions
defined on R+.

Lemma 3.5 (see [22]). Let the function u(t) ∈ PC1(R+,R) satisfy the inequalities

u′(t) ≤ f(t)u(t) + h(t), t /= τk, t > 0,

u
(
τ+k
) ≤ αku(τk) + θk, k ≥ 0,

u(0+) ≤ u0,

(3.4)

where f, h ∈ PC(R+,R) and αk ≥ 0, θk, and u0 are constants and (τk)k≥0 is a strictly increasing
sequence of positive real numbers. Then, for t > 0,

u(t) ≤ u0

(∏
0<τk<t

αk

)
exp

(∫ t
0
f(s)ds

)
+
∫ t

0

(∏
s≤τk<t

αk

)
exp

(∫ t
s

f
(
γ
)
dγ

)
h(s)ds

+
∑

0<τk<t

⎛
⎝ ∏

τk<τj<t

αj

⎞
⎠ exp

(∫ t
τk

f
(
γ
)
dγ

)
θk.

(3.5)

Similar result can be obtained when all conditions of the inequalities in the Lemmas
3.4 and 3.5 are reversed.

Using Lemma 3.5, it is easy to prove that the solutions of system (1.4) with strictly
positive initial value remain strictly positive as follows.

Lemma 3.6. The positive quadrant (R∗
+)

2 is an invariant region for system (1.4).

Proof. Let (x(t), y(t)) : [0, t0) → R
2 be a solution of system (1.4) with a strictly positive initial

value (x0, y0). By Lemma 3.5, we can obtain that, for 0 ≤ t < t0,

x(t) ≥ x0
(
1 − p1

)[t/τ] exp

(∫ t
0
g1(s)ds

)
,

y(t) ≥ y0
(
1 − p2

)[t/τ] exp

(∫ t
0
g2(s)ds

)
,

(3.6)

where g1(s) = r(1−x(s)/K)−(a/c)y(s)−λ and g2(s) = −d. Thus, x(t) and y(t) remain strictly
positive on [0, t0).
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Now, we give the basic properties of the following impulsive differential equation
considered the absence of the prey:

y′(t) = −dy(t), t /=nτ,

y(t+) =
(
1 − p2

)
y(t) + q, t = nτ,

y(0+) = y0.

(3.7)

Solving the first equation of (3.7) between pulses implies

y(t) = y(nτ+) exp(−d(t − nτ)), t ∈ (nτ, (n + 1)τ]. (3.8)

Substituting it in the second equation of (3.7), the following difference equation is obtained:

y((n + 1)τ) =
((

1 − p2
)
y(nτ) + q

)
exp(−dτ). (3.9)

Then a periodic solution y∗(t) of (3.7) is given by

y∗(t) =
q exp(−d(t − nτ))

1 − (1 − p2
)

exp(−dτ) , t ∈ (nτ, (n + 1)τ], n ∈ N. (3.10)

Thus we can easy obtain the following results.

Lemma 3.7. (1) y∗(t) = q exp(−d(t−nτ))/(1− (1− p2) exp(−dτ)), t ∈ (nτ, (n+ 1)τ], n ∈ N, and
y∗(0+) = q/(1 − (1 − p2) exp(−dτ)) is a positive periodic solution of (3.7).

(2) y(t) = (1−p2)
n+1(y0−q exp(−dτ)/(1−(1−p2) exp(−dτ))) exp(−dτ)+y∗(t) is a general

solution of (3.7) with y0 ≥ 0, t ∈ (nτ, (n + 1)τ] and n ∈ N.
(3) For every solution y(t) and every positive periodic solution y∗(t) of system (3.7), it follows

that y(t) tends to y∗(t) as t → ∞. Thus, the complete expression for the prey-free periodic solution
of system (1.4) is obtained (0, y∗(t)) = (0, q exp(−d(t − nτ))/(1 − (1 − p2) exp(−dτ))) for t ∈
(nτ, (n + 1)τ].

Now, we discuss the stability of the prey-free periodic solution (0, y∗(t)).

Theorem 3.8. (1) The prey-free periodic solution (0, y∗(t)) of system (1.4) is locally asymptotically
stable if

(r + λ)τ +
a

bd
ln
bq exp(−dτ) + c(1 − (1 − p2

)
exp(−dτ))

bq + c
(
1 − (1 − p2

)
exp(−dτ)) < ln

1
1 − p1

. (3.11)

(2) Moreover, (0, y∗(t)) is globally asymptotically stable if

(r + λ)τ +
a

bd
ln
rbq exp(−dτ) + (K(r + λ) + rc)

(
1 − (1 − p2

)
exp(−dτ))

rbq + (K(r + λ) + rc)
(
1 − (1 − p2

)
exp(−dτ)) < ln

1
1 − p1

.

(3.12)
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Proof. To show the local stability of the prey-free periodic solution (0, y∗(t)) of system (1.4),
consider the following impulsive differential system:

x′
1(t) = rx1(t)

(
1 − x1(t)

K

)
− ax1(t)y1(t)
by1(t) + x1(t) + c

+ λx1(t), t /=nτ,

y′
1(t) = −dy1(t) +

eax1(t)y1(t)
by1(t) + x1(t) + c

,

x1(t+) =
(
1 − p1

)
x1(t), t = nτ,

y1(t+) =
(
1 − p2

)
y1(t) + q,(

x1(0+), y1(0+)
)
=
(
x0, y0

)
.

(3.13)

By Lemma 3.4, x(t) ≤ x1(t) and y(t) ≤ y1(t), where (x(t), y(t)) is a solution of system (1.4).
Note that if (x1(t), y1(t)) is locally stable, then so is (x(t), y(t)). It is easy to see that the
periodic solution (0, y∗

1(t)) of (3.13) is the same as that of (1.4). That is, y∗
1(t) = y

∗(t). The local
stability of the periodic solution (0, y∗

1(t)) may be determined by considering the behavior of
small amplitude perturbations of the solution. Define x1(t) = u(t), y1(t) = y∗

1(t) + v(t). Then
they may be written as

(
u(t)

v(t)

)
= Φ(t)

(
u(0)

v(0)

)
, 0 ≤ t ≤ τ, (3.14)

where Φ(t) satisfies

dΦ
dt

=

⎛
⎜⎜⎜⎜⎝
r + λ − ay∗

1(t)
by∗

1(t) + c
0

eay∗
1(t)

by∗
1(t) + c

−d

⎞
⎟⎟⎟⎟⎠Φ(t), (3.15)

and Φ(0) = I, where I is the identity matrix. The linearization of the third and fourth
equations of system (1.4) becomes

(
u(nτ+)

v(nτ+)

)
=

(
1 − p1 0

0 1 − p2

)(
u(nτ)

v(nτ)

)
. (3.16)

Note that all eigenvalues of

(
1 − p1 0

0 1 − p2

)
Φ(τ) (3.17)

are μ1 = (1 − p1) exp(
∫τ

0r + λ − ay∗
1(t)/(by

∗
1(t) + c)dt) and μ2 = (1 − p2) exp(−dτ) < 1.
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Since
∫τ

0ay
∗
1(t)/(by

∗
1(t)+c)dt = −(a/bd) ln((bq exp(−dτ)+c(1−(1−p2) exp(−dτ)))/(bq+

c(1 − (1 − p2) exp(−dτ)))), the condition |μ2| < 1 is equivalent to (3.11). According to Floquet
theory [22], (0, y∗(t)) = (0, y∗

1(t)) is locally asymptotically stable.
It is easy to see that the solution (0, y∗(t)) is locally stable if condition (3.12) holds.

Now, to prove the global stability of the pest-free periodic solution, let (x(t), y(t)) be a
solution of system (1.4). From (3.12), we can select a sufficiently small number ε1 > 0
satisfying

ρ =
(
1 − p1

)
exp

(∫ τ
0
r + λ − ra

(
y∗(t) − ε1

)
rb
(
y∗(t) − ε1

)
+K(r + λ) + rε1 + rc

dt

)
< 1. (3.18)

It follows from the first equation in (1.4) that x′(t) ≤ x(t)(r + λ − (r/K)x(t)) for t /=nτ .
From Lemma 3.4, we have x(t) ≤ u(t), where u(t) is a solution of the following impulsive
differential equation:

u′(t) = u(t)
(
r + λ − r

K
u(t)
)
, t /=nτ,

u(t+) =
(
1 − p1

)
u(t), t = nτ,

u(0+) = x0.

(3.19)

Since u(t) → K(r + λ)/r as t → ∞ if x0 > 0, x(t) ≤ K(r + λ)/r + ε for any ε > 0 with t
large enough. For simplicity, we may assume that x(t) ≤ K(r + λ)/r + ε1 for all t > 0. Since
y′(t) ≥ −dy(t), it follow from Lemma 3.4 that y(t) ≥ v(t) > y∗(t) − ε1 for t sufficiently large,
where v(t) is a solution of the following impulsive differential equation:

v′(t) = −dv(t), t /=nτ,

v(t+) =
(
1 − p2

)
v(t) + q, t = nτ,

v(0+) = y0.

(3.20)

For simplicity, we may suppose that y(t) ≥ v(t) > y∗(t) − ε1 for all t ≥ 0. From system (1.4),
we obtain

x′(t) ≤ x(t)
(
r + λ − a

(
y∗(t) − ε1

)
b
(
y∗(t) − ε1

)
+K(r + λ)/r + ε1 + c

)
, t /=nτ,

x(t+) =
(
1 − p1

)
x(t), t = nτ.

(3.21)

Integrating (3.21) on (nτ, (n + 1)τ], we get

x((n + 1)τ) ≤ (1 − p1
)
x(nτ) exp

(∫ (n+1)τ

nτ

r + λ − ra
(
y∗(t) − ε1

)
rb
(
y∗(t) − ε1

)
+K(r + λ) + rε1 + rc

dt

)

= x(nτ)ρ
(3.22)
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and hence x((n + 1)τ) ≤ x(nτ)ρn which implies that x(nτ) → 0 as n → ∞. Further, we
obtain, for t ∈ (nτ, (n + 1)τ],

x(t) ≤ (1 − p1
)
x(nτ) exp

(∫ t
nτ

r + λ − ra
(
y∗(t) − ε1

)
rb
(
y∗(t) − ε1

)
+K(r + λ) + rε1 + rc

dt

)

≤ x(nτ) exp
((

r + λ +
a

c
ε1

)
τ

) (3.23)

which implies that x(t) → 0 as t → ∞. Now, take a sufficiently small number ε2 > 0
satisfying ε2 < d. Since limt→∞x(t) = 0, we may assume that x(t) ≤ ε2 for all t ≥ 0. It follows
from the second equation in (1.4) that, for t /=nτ ,

y′(t) ≤ y(t)
(
−d +

ea

c
ε2

)
. (3.24)

Thus, by Lemma 3.4, we induce that y(t) ≤ ỹ∗(t), where ỹ∗(t) is the periodic solution of (3.7)
with d changed into d − (ea/c)ε2. By taking sufficiently small ε1 and ε2, we obtain that y(t)
tends to y∗(t) as t → ∞.

Using the similar method to the proof of Theorem 3.8, we obtain the following
theorems.

Theorem 3.9. For system (1.5), the periodic solution (0, y∗(t)) is locally asymptotically stable if
(r+λ)τ −aq(1−exp(−dτ))/cd(1−(1−p2) exp(−dτ)) < ln(1/(1−p1)), and moreover, it is globally
asymptotically stable if (r + λ)τ − raq(1 − exp(−dτ))/d(K(r + λ) + rc)(1 − (1 − p2) exp(−dτ)) <
ln(1/(1 − p1)).

Theorem 3.10. For system (1.6), the periodic solution (0, y∗(t)) is locally asymptotically stable
if (r + λ − a/b)τ < ln(1/(1 − p1)), and moreover, it is globally asymptotically stable if (r +
λ)τ + (a/bd) ln((rbq exp(−dτ) + K(r + λ)(1 − (1 − p2) exp(−dτ)))/(rb + K(r + λ)(1 − (1 −
p2) exp(−dτ)))) < ln(1/(1 − p1)).

Now, we prove the boundedness of system (1.4).

Theorem 3.11. There is anM > 0 such that x(t), y(t) ≤M for all t large enough, where (x(t), y(t))
is a solution of system (1.4).

Proof. Let x(t) = (x(t), y(t)) be a solution of system (1.4) and let V (t, x) = ex(t) + y(t). Then
V ∈ V0. If t /=nτ , then we obtain

D+V + βV = −er
K
x(t)2 + e

(
r + λ sin(ωt) + β

)
x(t) +

(
β − d)y(t), (3.25)

V (nτ+) ≤ V (nτ) + q and V (0+) = ex0 +y0. Clearly, the right-hand side of (3.25) is bounded by
a constant M0 > 0 if 0 < β < d. So we can choose β0 such that

D+V ≤ −β0V +M0, t /=nτ,

V (nτ+) ≤ V (nτ) + q.
(3.26)
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From Lemma 3.4, we obtain that

V (t) ≤
(
V (0+) − M0

β0

)
exp
(−β0t

)
+
q
(
1 − exp

(−(n + 1)β0τ
))

1 − exp
(−β0τ

) exp
(−β0(t − nτ)

)
+
M0

β0

(3.27)

for t ∈ (nτ, (n + 1)τ]. Therefore, V (t) is bounded by a constant M > 0 for sufficiently large t.
Hence x(t) ≤M, y(t) ≤M for a solution (x(t), y(t)) with all t large enough.

The boundedness of systems (1.5) and (1.6) can be obtained from Theorem 3.11.
Next, we investigate the permanence of system (1.4).

Theorem 3.12. System (1.4) is permanent if

(r − λ)τ +
a

bd
ln
bq exp(−dτ) + c(1 − (1 − p2

)
exp(−dτ))

bq + c
(
1 − (1 − p2

)
exp(−dτ)) > ln

1
1 − p1

. (3.28)

Proof. Let x0, y0 > 0. Consider the following system:

x′
2(t) = rx2(t)

(
1 − x2(t)

K

)
− ax2(t)y2(t)
by2(t) + x2(t) + c

− λx2(t), t /=nτ,

y′
2(t) = −dy2(t) +

eax2(t)y2(t)
by2(t) + x2(t) + c

,

x2(t+) =
(
1 − p1

)
x2(t), t = nτ,

y2(t+) =
(
1 − p2

)
y2(t) + q,(

x2(0+), y2(0+)
)
=
(
x0, y0

)
.

(3.29)

It follows from Lemma 3.4 that x(t) ≥ x2(t) and y(t) ≥ y2(t). From Theorem 3.11, we may
assume that x2(t) < M, y2(t) < M, for all t ≥ 0 large enough and M > (r − λ)/a. Let
m2 = q exp(−dτ)/(1 − (1 − p2) exp(−dτ)) − ε2, ε2 > 0. From Lemmas 3.4 and 3.7, we obtain
y2(t) ≥ m2 for all t large enough. Thus we will show that x2(t) has a lower bound m1 > 0 for
all t large enough. We will do this in the following two steps.

Step 1. From (3.28), we can choose m3 > 0, ε1 > 0 small enough such that δ < d and η =
(1 − p1) exp((r − λ − (r/K)m3)τ + (a/bd) ln(A/B) − (aε1/c)τ) > 1, where δ = eam3/c, A =
bq exp(−dτ) + c(1 − (1 − p2) exp(−dτ)) and B = bq + c(1 − (1 − p2) exp(−dτ)). Suppose that
x2(t) < m3 for all t. Then, from the second equation of system (3.29), we obtain y′

2(t) ≤
y2(t)(−d + (ea/c)x2(t)) ≤ y2(t)(−d + δ). By Lemmas 3.4 and 3.7, we get y2(t) ≤ u(t) and
u(t) → u∗(t) as t → ∞, where u(t) is the solution of

u′(t) = (−d + δ)u(t), t /=nτ,

u(t+) =
(
1 − p2

)
u(t) + q, t = nτ,

u(0+) = u0 > 0,

(3.30)
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Figure 5: Bifurcation diagrams of system (1.4). (a)-(b) x, y are plotted for p when λ = 0, (c)-(d) x, y are
plotted for p when λ = 1.

and u∗(t) = q exp((−d + δ)(t− nτ))/(1− (1− p2) exp((−d + δ)τ)), t ∈ (nτ, (n+ 1)τ]. Then there
exists T1 > 0 such that y2(t) ≤ u(t) ≤ u∗(t) + ε1 for t ≥ T1. So, if t /=nτ , t ≥ T1, then

x′
2(t) ≥ x2(t)

(
r − λ − r

K
m3 − au∗(t) + aε1

bu∗(t) + bε1 + c

)

≥ x2(t)
(
r − λ − r

K
m3 − au∗(t)

bu∗(t) + c
− aε1

c

)
,

(3.31)

and if t = nτ , t ≥ T1, then x(t+) = (1 − p1)x(t). Let N1 ∈ N and N1τ ≥ T1. Integrating (3.31)
on (nτ, (n + 1)τ], n ≥ N1, we have x2((n + 1)τ) ≥ (1 − p1)x2(nτ) exp(

∫ (n+1)τ
nτ r − λ − (r/K)m3 −

au∗(t)/(bu∗(t)+c)−(aε1/c)dt) ≥ x2(nτ) exp(η). Then x2((N1+k)τ) ≥ x2(N1τ) exp(kη) → ∞
as k → ∞ which is a contradiction to the boundedness of x2(t). Hence there exists a t1 > 0
such that x2(t1) ≥ m3.

Step 2. If x2(t) ≥ m3 for all t ≥ t1, then we are done. If not, we may let t∗ = inft>t1{x2(t) < m3}.
Then x2(t) ≥ m3 for t ∈ [t1, t∗) and, by the continuity of x2(t), we have x2(t∗) = m3. Suppose
that t∗ ∈ [n1τ, (n1+1)τ) for some n1 ∈ N. Select n2, n3 ∈ N such that n2τ(δ−d) < ln(ε1/(M+p))
and (1 − p1)

n2 exp((n2 + 1)η1τ) exp(n3η) > 1, where η1 = r − λ − (r/K)m3 − aM < 0. Let
T = n2τ + n3τ . Then we have only to consider two possible cases for t ∈ (t∗, (n1 + 1)τ].

Case 1 (x2(t) < m3 for t ∈ (t∗, (n1 + 1)τ]). In this case we will show that there exists t2 ∈
[(n1 + 1)τ, (n1 + 1)τ + T] such that x2(t2) ≥ m3. Suppose not, that is, x2(t) < m3, t ∈ [(n1 +
1)τ, (n1 + 1 + n2 + n3)τ]. Then x2(t) < m3 for all t ∈ (t∗, (n1 + 1 + n2 + n3)τ]. By (3.30) with
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Figure 6: Phase portraits of solutions for system (1.4) when λ = 0. (a) p = 0.4, (b) p = 3.1 (a 4τ-periodic
solution), (c) p = 4.

u((n1 + 1)τ+) = y2((n1 + 1)τ+), we obtain

u(t) =
(
1 − p1

)n1+1

(
u((n1 + 1)τ+) − p

1 − (1 − p2
)

exp(−d + δ)

)

× exp((−d + δ)(t − (n1 + 1)τ)) + u∗(t)

(3.32)

for t ∈ (nτ, (n+1)τ], n1+1 ≤ n ≤ n1+n2+n3. So we get |u(t)−u∗(t)| ≤ (M+p) exp((−d+δ)n2τ) <
ε1 and y2(t) ≤ u(t) ≤ u∗(t) + ε1 for t ∈ [(n1 + 1 + n2)τ, (n1 + 1 + n2 + n3)τ]. Also we obtain that
x′

2(t) ≥ x2(t)(r −λ− (r/K)m3 − (au∗(t)/(bu∗(t) + c)−aε1/c) if t /=nτ and x2(t+) = (1− p1)x2(t)
if t = nτ , for t ∈ [(n1 + 1 + n2)τ, (n1 + 1 + n2 + n3)τ]. Similarly to Step 1, we have

x2((n1 + 1 + n2 + n3)τ) ≥ x2((n1 + 1 + n2)τ) exp
(
n3η
)
. (3.33)

Since (3.29) and y2(t) ≤M we have, for all t ∈ (t∗, (n1+1+n2)τ], x′
2(t) ≥ x2(t)(r−λ−(r/K)m3−

aM) = η1x2(t) if t /=nτ and x2(t+) = (1 − p1)x2(t) if t = nτ . Integrating it on [t∗, (n1 + 1 + n2)τ]
we obtain that

x2((n1 + 1 + n2)τ) ≥ m3
(
1 − p1

)n2 exp
(
η1((n1 + 1 + n2)τ − t∗))

≥ m3
(
1 − p1

)n2 exp
(
η1(n2 + 1)τ

)
.

(3.34)

Thus x2((n1 + 1 + n2 + n3)τ) ≥ m3(1 − p1)
n2 exp(η1(n2 + 1)τ) exp(n3η) > m3 which is a

contradiction.
Now, let t = inft>t∗{x2(t) ≥ m3}. Then x2(t) ≤ m3 for t∗ ≤ t < t and x2(t) = m3. So, we

have, for t ∈ [t∗, t), x′
2(t) ≥ x2(t)(r − λ − (r/K)m3 − aM) if t /=nτ and x2(t+) = (1 − p1)x2(t)

if t = nτ . By the integration of it on [t∗, t) for (t∗ ≤ t ≤ t), we can get that x2(t) ≥ x2(t∗)(1 −
p1)

1+n1+n2 exp(η1(t − t∗)) ≥ m3(1 − p1)
1+n1+n2 exp(η1(1 + n2 + n3)τ) ≡ m1 > 0.
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Figure 7: Phase portraits of solutions for system (1.4) when λ = 0. (a) p = 10.4 (a 8τ-periodic solution), (b)
p = 11 (a 4τ-periodic solution).

0

5

10

15

y

0 2 4 6 8

x

(a)

0

5

10

15

20

y

0 5 10

x

(b)

Figure 8: Phase portraits of solutions for system (1.4) when λ = 1. (a) p = 0.35, (b) p = 6.9.

Case 2 (there is a t′ ∈ (t∗, (n1 + 1)τ] such that x2(t′) ≥ m3). Let t = inft>t∗{x2(t) ≥ m3}. Then
x2(t) ≤ m3 for t ∈ [t∗, t) and x2(t) = m3. For t ∈ [t∗, t), x′

2(t) ≥ x2(t)(r − λ − (r/K)m3 − aM) if
n/=nτ . Integrating the equation on [t∗, t) (t∗ ≤ t ≤ t), we can get that x2(t) ≥ x2(t∗) exp(η1(t −
t∗)) ≥ m3 exp(η1τ) ≥ m1.

Thus, in both cases the similar argument can be continued since x2(t) ≥ m3 for some
t > t1. This completes the proof.

Applying the method used in the proof of Theorem 3.12 to systems (1.5) and (1.6), we
obtain the following results.

Theorem 3.13. System (1.5) is permanent if (r−λ)τ−aq(1−exp(−dτ))/cd(1−(1−p2) exp(−dτ)) >
ln(1/(1 − p1)).

Theorem 3.14. System (1.6) is permanent if (r − λ − a/b)τ > ln(1/(1 − p1)).
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Figure 9: Bifurcation diagrams of system (1.4). (a)-(b) x, y are plotted for λ when p = 3, (c)-(d) x, y are
plotted for λ when p = 10.
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Figure 10: Phase portraits of solutions for system (1.4) when p = 3. (a) λ = 2.3, (b) λ = 6.2.

4. Numerical Analysis of Seasonal Effect and Impulsive Perturbation

In this section we will study the influence of impulsive perturbation and seasonal effects
on system (1.4), and the relationship between seasonal effects and impulsive perturbation.
For this, we take the same parameters as those in Section 2, p1 = p2 = 0 and τ =
10.

First, we display bifurcation diagrams for system (1.4) as p increases from 0 to 20
about λ = 0 and λ = 1 in Figure 5. From Figures 5(a) and 5(b), we see that system
(1.4) experiences quasiperiodic oscillation (see Figure 6(a)) when p < p1(≈ 0.5). However,
when p > p1, we see that there is a cascade of periodic bifurcation (see Figure 6(b))
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Figure 11: Regions induced from Theorems 3.8 and 3.12. (a) τ = 0.1, (b) τ = 0.5, (c) τ = 1.5, (d) τ = 2.

leading to chaos (see Figure 6(c)), which is followed by a cascade of periodic halving
bifurcation from chaos to periodic solutions (see Figure 7). Figures 5(c) and 5(d) clearly
show that with p increasing from 0 to 20, system (1.4) experiences process of periodic
oscillating→periodic doubling→ chaos→periodic halving. Figure 8 displays two different
strange attractors. Next, Figure 9 illustrates bifurcation diagrams for different values of
the pulse p and λ as a bifurcation parameter. It follows from Figures 9(a) and 9(b) that
system (1.4) experiences process of periodic oscillating with different periods→periodic
doubling→ chaos→periodic windows with periodic halving cascade→ τ-periodic solutions.
Figure 10 exhibits two different strange attractors. It follows from Figures 9(c) and 9(d) that
system (1.4) undergoes chaotic motions when λ < λ1(≈ 0.51). When λ > λ1, chaotic motions
suddenly disappear and appear as τ-periodic solutions. There are also periodic doubling
and halving phenomena. Finally, we investigate the relationship between p, λ, and τ in a
view of controlling the population density of the prey and predator. As seen in Figure 11,
we figure out that the longer the period τ is, the larger the permanence region is and the
smaller the stability region is. That means that we should release the predator within a short
period, or the impulsive perturbations of the predator should be occurred at short intervals,
to eradicate the prey. On the contrary, the impulsive perturbations of the predator should
be occurred at long-time intervals for coexistence of the prey and the predator. If we choose
(p, λ, τ) = (5, 1, 1.5), we can see coexistence of the prey and predator as shown in Figure
12.
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Figure 12: (a) Phase portrait of system (1.4) with p = 5, λ = 1, and τ = 1.5. (b)-(c) Time series of x and y.

5. Conclusion

In this paper, we have investigated the effects of periodic forcing in the intrinsic growth rate
of the prey and impulsive perturbations on a predator-prey system with the Beddington-
DeAngelis functional response. We have shown that there exists an asymptotically stable
prey-free periodic solution if the magnitude λ of seasonality is less than some critical value
and have found parameter regions which system (1.4) is permanent. Numerical results have
shown that system (1.4) can give birth to various kinds of dynamical behaviors. Especially,
the prey and the predator can coexist even if there are seasonal effects on the prey. In addition,
conditions for the stability of prey-free solution and for the permanence of Holling-type II or
ration-dependent predator-prey systems have been obtained. Thus we have improved the
results of [15].
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