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10. Galois modules and class field theory

Boas Erez

In this section we shall try to present the reader with a sample of several significant
instances where, on the way to proving results in Galois module theory, oneis lead to
use classfield theory. Conversely, some contributions of Galois module theory to class
fields theory are hinted at. We shall also single out some problems that in our opinion
deserve further attention.

10.1. Normal basistheorem

The Normal Basis Theorem is one of the basic resultsin the Galois theory of fields. In
fact one can use it to obtain a proof of the fundamental theorem of the theory, which
sets up a correspondence between subgroups of the Galois group and subfields. Let us
recall its statement and give aversion of its proof following E. Noether and M. Deuring
(avery modern proof!).

Theorem (Noether, Deuring). Let K be a finite extension of Q. Let L/K be afinite
Galois extension with Galois group G = Gal(L/K). Then L isisomorphic to K[G]
asa K[G]-module. That is: thereisan a € L suchthat {o(a)},cc isa K-bass of
L. Suchan «a iscalled a normal basis generator of L over K.

Proof. Use theisomorphism
p: Lok L— LG, ¢@oy)=> o@yo ",
oeG

then apply the Krull-Schmidt theorem to deduce that this isomorphism descendsto K.
Note that an element a in L generates a normal basis of L over K if and only if
p(a) € LIG]*.
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10.1.1. Normal integral basesand ramification.

Let us now move from dimension O (fields) to dimension 1, and consider rings of
algebraic integers.

Let p beaprime number congruent to 1 modulo an (odd) prime . Let L1 = Q(up),
and let K be the unique subfield of L1 of degree | over Q. Then G = Gal(K/Q) is
cyclic of order [ and K istamely ramified over Q. One can construct a normal basis
for thering Ok of integersin K over Z: indeed if ¢ denotes a primitive p-th root
of unity, then ¢ isanormal basis generator for L1/Q and the trace of ¢ to K gives
the desired normal integral basis generator. Let now Ly = Q(p;2). Itiseasy to seethat
thereis no integral normal basisfor L, over Q. Asnoticed by Noether, thisis related
tothefact that L, isawildly ramified extension of the rationals. However there is the
following structure result, which gives a complete and explicit description of the Galois
modul e structure of rings of algebraic integersin absolute abelian extensions.

Theorem (Leopoldt 1959). Let K be an abelian extension of Q. Let G = Gal(K/Q).
Define

Az{)\EQ[G]:)\OK COK}

where Ok isthering of integersof K. Then Ok isisomorphicto A asa A-module.

Note that the statement is not true for an arbitrary global field, nor for general relative
extensions of number fields. The way to prove this theorem is by first dealing with the
case of cyclotomic fields, for which one constructs explicit normal basis generatorsin
terms of roots of unity. In this step one usesthe criterion involving the resolvent map ¢
which we mentioned in the previous theorem. Then, for ageneral absolute abelian field
K, oneembeds K into the cyclotomic field Q(fx) with smallest possible conductor
by using the Kronecker—\Weber theorem, and one “tracestheresult down” to K. Hereit
is essential that the extension Q(fx)/K isessentially tame. Explicit classfield theory
is an important ingredient of the proof of this theorem; and, of course, this approach
has been generalized to other settings: abelian extensions of imaginary quadratic fields
(complex multiplication), extensions of Lubin—Tate type, etc.

10.1.2. Factorizability.

While Leopoldt’s result is very satisfactory, one would still like to know a way to
express the relation there as a relation between the Galois structure of rings of integers
in general Galois extensions and the most natural integral representation of the Galois
group, namely that given by the group algebra. Thereis avery neat description of this
which usesthe notion of factorizability, introduced by A. Frohlich and A. Nelson. This
leads to an equivalence relation on modules which is weaker than local equivalence
(genus), but which is non-trivial.

Let G beafinitegroup,andlet S ={H : H < G}. Let T' be an abelian group.
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Definition. Amap f:S — T iscaled factorizableif every relation of the form

> apindG1=0
HeS

with integral coefficients ag, implies the relation

I rane=1.

HeS

Example. Let G = Gal(L/K), then the discriminant of L/K defines afactorizable
function (conductor-discriminant formula).

Definition. Let i: M — N beamorphismof O x[G]-lattices. Thelattices M and N
are said to be factor-equivalent if themap H — |L¥ : i(M)H| isfactorizable,

Theorem (Frohlich, de Smit). If G = Gal(L/K) and K isaglobal field, then O is
factor-equivalent to O x[G].

Again this result is based on the isomorphism induced by the resolvent map ¢ and
the fact that the discriminant defines a factorizable function.

10.1.3. Admissible structures.

Ideas related to factorizability have very recently been used to describe the Galois
module structure of idealsin local field extensions. Here is a sample of the results.

Theorem (Vostokov, Bondarko). Let K be a local field of mixed characteristic with
finite residuefield. Let L be a finite Galois extension of K with Galois group G.

(1) Let I; and I, beindecomposable O x[G]-submodules of Op. Then I; isiso-
morphic to I, as Ox[G]-modulesif and only if thereisan a in K* such that
I]_ = aIz.

(2) Op contains decomposable ideals if and only if there is a subextension E/L of
L/K suchthat |L : E|O containsthedifferent Dy, /p.

(3) If L isatotallyramified Galois p-extensionof K and O containsdecomposable
ideals, then L/K iscyclicand |L : K|Oy containsthe different Dy, /.

In fact what is remarkable with these results is that they do not involve class field
theory.
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10.2. Galoismoduletheory in geometry

Let X be asmooth projective curve over an algebraicaly closed field k. Let afinite
group G acton X. Put Y = X/G.

Theorem (Nakajima 1975). The covering X /Y is tame if and only if for every line
bundle £ of sufficiently large degree which is stable under the G-action HO(X, L) is
a projective k[G]-module.

This is the precise analogue of Ullom’s version of Noether’s Criterion for the ex-
istence of anormal integral basis for ideals in a Galois extension of discrete valuation
rings. Infactif (X, G) isatame action of afinite group G on any reasonable proper
scheme over aring A like Z or F,, then for any coherent G'-sheaf 5 on X one can
define an equivariant Euler—Poincaré characteristic x(F, G) inthe Grothendieck group
Ko(A[G]) of finitely generated projective A[G]-modules. It isan outstanding problem
to compute these equivariant Euler characteristics. One of the most important results
in this area is the following. Interestingly it relies heavily on results from class field
theory.

Theorem (Pappas1998). Let G beanabeliangroupandlet X bean arithmetic surface
over Z with afree G-action. Then 2y (O, G) =0 in Ko(Z[G)])/{Z[G]).

10.3. Galoismodulesand L-functions

Let afinite group G act on a projective, regular scheme X of dimension n defined
over thefinitefield F, andlet Y = X/G. Let ((X,t) bethe zeta-function of X. Let
ex bethe [-adic Euler characteristic of X . Recall that

(1) = £ )X g, ex n=2 ) (-1 (n— x(Qyr,)
0<ign

the latter being a consequence of the Hirzebruch—Riemann—Roch theorem and Serre
duality. It is well known that the zeta-function of X decomposes into product of
L-functions, which also satisfy functional equations. One can describe the constants
in these functional equations by “taking isotypic components’ in the analogue of the
above expression for ex - n/2 in terms of equivariant Euler-Poincaré characteristics.
The results that have been obtained so far do not use class field theory in any important
way. So we arelead to formulate the following problem:

Problem. Using Parshin’s adelic approach (sections 1 and 2 of Part I1) find another
proof of these resuilts.

L et us note that one of the main ingredientsin the work on these mattersisaformula
on e-factorsof T. Saito, which generalizesoneby S. Saito inspired by Parshin’sresults.
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10.4. Galoisstructure of class formations

Let K be anumber field and let L be afinite Galois extension of K, with Galois
group G = Gal(L/K). Let S beafinite set of primesincluding those which ramify in
L/K and the archimedean primes. Assumethat S is stable under the G-action. Put
AS = ker(ZS — 7). Let Ug bethe group of S-unitsof L. Recal that Us ® Q is
isomorphicto AS ® Q as Q[G]-modules. Thereisawell known exact sequence

0—-Us—A—B—AS—0

with finitely generated A, B such that A has finite projective dimension and B is
projective. The latter sequence is closely related to the fundamental class in global
class field theory and the class Q = (A) — (B) in the projective class group Cl (Z[G]
is clearly related to the Galois structure of S-units. There are local analogues of the
above sequence, and there are analogous sequences relating (bits) of higher K -theory
groups (theideaisto replace the pair (Us, AS) by apair (K;(0), K. _4(0))).

Problem. Usingcomplexesof GG-modules(asinsection 11 of part |) can onegeneralize
the local sequencesto higher dimensional fields?

For more details see [ E].
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