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Abstract

In this paper, consisted in finding the nomwypomial spline function and
generalized it by fractional order. Other proposd this function was
interpolating spline fractional derivatives, wittheir effective applications to
numerically solving fractional boundary value prebis. We also discussed the
rate of convergence of the method with fractionaeo. The error bounds and
convergence of our difference schemes for nonpotiaiospline with fractional
order are theoretically established, this is doryecbmputer program with the aid
of the Maptlab 13 for all the above prescribed noeth) and the numerical results
for boundary value problems are also presented.
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1 I ntroduction

Recently, differential equations of fractional ardeve been the focus of many
studies due to their frequent appearance in variapplications in fluid
mechanics, viscoelasticity, biology, physics andjieeering [2, 10, 11]. Most
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fractional differential equations do not have examtalytic solutions, so
approximation and numerical techniques must be.uBkd variational iteration
method [12, 14] and the fractional polynomial metl{8, 4] are relatively new
approaches to provide an analytical approximationlihear and nonlinear
problems, and they are particularly valuable adstdor scientists and applied
mathematicians, because they provide immediatevasilole symbolic terms of
analytic solutions, as well as numerical approxerstlutions to both linear and
nonlinear differential equations without linearipator discretization.

As is well known, the difficulty of solving fracti@l differential equations is
essentially because fractional calculus is nontaxaerators. This non-local
property means that the next state a system ngtdepends on its current state
but also on its historical states starting fromithgal time. This property is closer
to reality and is the main reason why fractiondtwas has become more and
more useful and popular. In other words, this rmal property is good for
modeling reality, but a challenge for numerical potations. During the recent
years, much effort has been devoted to the numeneastigations of fractional
calculus via fractional spline function of a polynial form (see [3, 5, 6, 7, 8]).

In this paper, we consider a new fractional sptiheon-polynomial form to solve
the generalized Bagley-Torvik equation of the fqif, 16, 17, 18]:

(D?** + nD%* + p) y(x) = f(x), « = 1.5, x € [a, b] (1)
Subject to boundary conditions

y(a) =y(b) =0, 2

wheren, n are all real constants and m=1 or 2. The fundighis continuous on
the interval [a, b] and the operafdft represents the Caputo fractional derivative.
Wheru = 1, then equation (1) is reduced to the classicabrs®order boundary
value problem.

Such problems arise in the theory of the fractiamadtulus and a number of other
scientific applications. In general, it is diffitub obtain the analytical solution of
Equations (1)-(2) for arbitrary choices gfu and f(x). We usually resort to a
numerical method for obtaining an approximate sotubf the problem equations
(1) and (2).

In this paper, we have derived a new fractionalngpkcheme using a non-
polynomial spline for the solution of Equations-(2). Finally, some numerical
evidence is included to show the practical appllitgband superiority of our

methods.
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2 Preliminaries

In this section, we recall some basic facts intfomal calculus. There are many
ways to define fractional integral and fractionatidative. In this paper we will
use Riemann- Liouville fractional integral and Chpfractional derivative.

Let a be a positive real arf@k) be a function defined on the right sideapthen

Definition 1: [2, 13] The Riemann-Liouville fractional integraf ordera > 0 is
defined by

18 () = —

mj;l(x—f)“_lf(f)df, n—1l1<a<neN,

whererl is the gamma function.

Definition 2[2, 15] The Riemann-Liouville fractional derivatie# ordera > 0 is
defined by

dTl

1
DEF(X) = s 5

n—a f(&)dé, n—-1<a<neN.

JICRA

Definition 3: [1] The Caputo fractional derivative of order> 0 is defined by

D) = (-1 L feyas, m—1<a<nen.
'n—a) fa dén

Definition 4: [1, 2, 15] The Grunwald definition for fractionakdvative is:

“Dgf(x) = limp o X Gy (x — kh), 3)

where the Grinwald weights agg; ) = #&ﬁl) (4)

3  Consistency Relations

In this section, we obtain an approximate solutdrthe fractional differential
equation (1)-(2) using non-polynomial fractionallise functions. For this
purpose, we introduce a finite set of grid poitby dividing the intervala, b]

into n- equal parts.

a

xi=a+ih,x0=a,xn=b,h=b%, i=0(1)n. (5)

Let y(x) be the exact solution of the equation (1) &nde an approximation to
y; = y(x;) obtained by the segmeRt(x) passing through the points;, S;) and
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(xi+1,S;+1) then in each subinterval the fractional splinensextP;(x) has the
form:

P;(x) = a; + b;(x — x;)% + ¢; sing k(x — x;,)% + d; cos, k(x — x;)%/?,i = 0(n. (6)
wherey;, b;, c; andd; are constants anldis the frequency of the trigonometric
functions which will be used to raise the accuratthe method. For convenience
consider the following relations:

Pi(x;) = yi, Pi(xi41) = Yiy1, D2OPi(x)) = M, D**Pi(xi41) = Miyq, i =0(Dn.  (7)

Via a straightforward calculation we obtain the uesd ofa;, b;, c; andd; as
follows:

a; =y; + % (8)
b, = yi+hla_yi + Mi+01k_Mi’ (9)
o= MR, (10)
di= -1 (12)

wheré = kh* and fori = 0(1)n — 1.

Using the continuity conditionB2¢P;_; (x;) = D?*P;(x;)we have the following
consistency relations:

%(}’iﬂ —2y; + Yi-1) = AMiyq + 2BM; + AM; 4, 1 =2(Dn - 1, (12)
where

A= %(F(a + 1)0 csc, 0 — 1)andp = %(1 —TI'(a + 1)6 cot, ),
where 6§ = kh* and
M; = f; = uSi =nD*S(X)|x=x, = 0(D)n, (13)

with f; = f(x;). Now to determinB“S(x)|,=,,, i = 0(1)n, we use the fact that

[e¢]

T
w+1)" = z (k) wk, foreach |w|<1,p>0,
k=0
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Where (k) (F) k) DTG

r(-rrk+1)’
If we setw = —1 then the above summation will be vanished. Fronchvive
3
may approximate of the fractional teﬂif(x)| , i = 0(1)n, as follows:
X=X;
DS(2)|xmx; = B~ X GaxcS(x; — kh), i = 0(1n, (14)

where the Grinwald weightg, , are given in equation (4).

4  ConvergenceAnalysis

Here we investigate the error analysis of the sphmethod described in section 3.
LetY =(y), S=(s5), T=(t;))and E =(e;)) =Y —S be n—1 dimensional
column vectors. Then, we can write the system gbxe(iL3) as follows:

PS = h?*BM, (15)
where the matriceB andB are given below

1, for li—j|=1;

=2, fori=j=11)n-1;
., {
0, otherwise.

The tridiagonal matrixB is given by
28 A
A 2B A \

B= .
A 28 2
1 28

The vectorM can be written as:
M =F —uS—nh™ %G (16)
Where the vectorB and the matrix¢ are given below respectively:

F= (fpfz; ---:fn—2:fn—1)t (17)

and
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Ya,0
/ 9a1 Yaa \l
: : |
Jan-3 YGan-4 a1 Ga,0 /
Jan-3 YGan-4 Ya,2 Ya1 Yao

G =

whereg, , are the Grinwald weights and given in equation (4)
Substituting from equation (17) into equation (&) get:
(P + uh?**B + nh*BG)S = h**BF, and
(P + uh?*B + nh*BG)Y = h?*BF +T.
Hence
T = (P + uh®*B + nh*BG)E. (18)

Our main purpose now is to derive a bound||&fi. From the equation (18) we
can write the error term as

E = (I + uh**P~'B 4+ nh®*P~'BG)~1P~1T,
which implies that
IENl = IU + ph?*P~'B +nh*P~*BG) ™ || - I[P~ - IITII. (19)
In order to derive the bound di&ll, the following two lemmas are needed.

Lemma 1: [9] If N is a square matrix of order n arldN [I< 1, then( + N)!
exists and

I+ MN7H < ——r
1INl

Lemma 2: The matrix(P + uh?*B + nh®BG) given in Eq. (18) is nonsingular if
1
(1 + 2nmh™Hw < 1, wherew = 3 (b — a)? + h?).

Proof: Let
N = uh?*P~'B + nh*P~'BG. (20)

It was shown, in [4], that
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-2
IP=H <%= ((b — @)? + h?) = wh™?, (21)
_ 1 I'(2a+1)
and from the systerB we have fot + § = TGarD anda # v that
Bl =1, (22)

and from the syster@i, we have
n-—2
161 = |gaxl
i=0

which, together with the fact thgt,, = 1 andg,; = —a, leads to
|G| <2m, V(m—1) <a <m. (23)

Substituting equations (21)—(23) into equation @J then using our assumption
we obtain
I NII< 1. (24)

Then by lemma I/ + ph?*P~1B + nh*P~1BG) ™! exists and

1

2ap-1 ap-1 —1<
(U + ph* P8 +nh“ P BG) ™ < T m i —aner B el

(25)

This completes proof of the lemnsa.

As a result of the above lemma, the discrete bayndalue problem (15) has a
unigue solution ifu + 2nmh~*)w < 1. Expanding (12) in fractional Taylor’s
series about; we obtain

ITIl = & h**M,, (26)

where
M, = max |D**y(x)]|.
asxs<b

Hence using equation (19) we have

IEI| = L
1—ph2e||P~Ll||BlI-nhP~HIBIIGI

= O(h%e 1), 27)

In view of lemma 2, we can conclude the followihgarem:

Theorem 1. Let y(x) be the exact solution of the continuousnidary value
problem (1)-(2) and leg(x;), i = 1(1)n — 1, satisfy the discrete boundary value
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problem (15). Moreover, if we get= y; — s;, then||E|| = 0(h**1) as given by
equation (27), neglecting all errors due to rourftl o

5 Numerical |llustrations and Discussion

To illustrate our method and to demonstrate itsveagence and applicability of
our presented methods computationally, we haveedatwo fractional boundary
value problems for different values @f A2 and all calculations are implemented
with MATLAB 12.

Example 1. Consider the boundary value problem

(D?* 4+ 0.5D% + 1)y(x) = f(x), where

120x 24
re—a) rGé-aw

120x 24 )

)+x4(x—1)+0.5x4_2“(r(6_a)—r(5_a)

£ =x*2(

Subject toy(0) =y(1) =0. The exact solution of this problem y§x) =
x*(x — 1).

The numerical solution foif = 0.5,u = 1,n = 8 anda = 1.5 is represented in
Table 1, and forn=05u=1,n=8A=3=0.25 and a=1 the the
approximate values are given in Table 2. Also, hltecerrors for each case are
demonstrated and the exact and numerical soluicmslemonstrated in Figure 1.
forh = 0.25 anda = 1.

Table 1. Exact, approximate and absolute error

a=15andA+p=—

X Exact Solution Approximation Error
Solution

0 0 0 0
0.125 -0.0002140 0.00009092 1.22702513E-04
0.250 -0.0029297 0.00005791 2.87176769E-03
0.375 -0.0123596 -0.0002619 1.20976282E-02
0.500 -0.0312500 -0.0009829 3.02670898E-02
0.625 -0.0572200 -0.0020054 5.52150044E-02
0.750 -0.0791000 -0.0028265 7.62749965E-02
0.875 -0.0732730 -0.0023161 7.09565864E-02

0 0 0 0
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Table 1. Exact, approximate and absolute error

o =1,andA = p =025

X Exact Solution Approximation Solution Error
0 0 0 0
0.125 -0.000213623046875 0.000669849021779  8.8B8BXA0414E-04
0.250 -0.002929687500000 -0.001578011755589  1.3x4B10663E-03
0.375 -0.012359619140625 -0.010343254460196  2.C1B&EBI29414E-03
0.500 -0.031250000000000 -0.027737358431649  3.3BBBB50627E-03
0.625 -0.057220458984375 -0.050748995989373  6.£PBEDH02224E-03
0.750 -0.079101562500000 -0.067549138705254  1.75B#74605E-02
0.875 -0.073272705078125 -0.053705159914945  1.98538318006E-02
0 0 0 0
EL et
o
T i S SO SO U SOt ST UUURTNS SOUUURUR TR U
D2 E oo e N e
DOBE oo e N

D07 e Ewact it b ST
—+— Approximate | © : :
-0.08 T 1 | 1 1 l
a 0125 0.25 0.375 0.s 0.625 074 0.87a 1
¥

Figure 1. Exact and approximate solutions of Example 1 Wwith.25

Example 2: Consider the fractional differential equation

D**y(x) + nD%y(x) + py(x) = f(x), (29)

Where
f(x) = pux3(x— 1) + 120x°7¢ (

—-a

n —
re—a) r—a

n x™® )

)) + 504077 (r(s “o) TB-a

subject toy(0) = y(1) = 0. The exact solution of this problem is

y(x) = x” —x5.
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The numerical results obtained, for different valoéa, 3, 1, A and for0 < x < 1,
are shown in Table 3 and 4, together with absokrers, to illustrate the
accuracy of the proposed method. Also, absolutersrfor each case are
demonstrated and the exact and numerical solutayes given in Figure 2
fora = 1.

Table 3. Exact, approximate and absolute error

p=1n=050=15and=p==

X Exact Solution Approximation Error
Solution

0 0 0 0
0.125 -0.00003004 -0.00956430 9.534259850E-03
0.250 -0.00091552 -0.01995814 1.904261930E-02
0.375 -0.00637292 -0.03206469 2.569176706E-02
0.500 -0.02343750 -0.04607803 2.264053716E-02
0.625 -0.05811452 -0.05944937 1.334851175E-03
0.750 -0.10382080 -0.06402991 3.979088570E-02
0.875 -0.12021303 -0.04230987 7.790315638E-02

0 0 0 0

Table 4. Exact, approximate and absolute error

pn=1n=05o0u0a= 1,)\=i, andﬁ=;

14

X Exact Solution Approximation Solution Absolute Error

0 0 0 0
0.125 -0.0000300407409667 0.005406581671185  5.238@A51732E-03
-0.250 -0.000915527343750 0.009593364167635  1.@®8@EA3 38525E-02
0.375 -0.006372928619385 0.008700135962566  1.5@EB1®5120E-02
0.500 -0.023437500000000 -0.004576612592262 1.&3@0F73831E-02
0.625 -0.058114528656006 -0.036598772088711  2.H&BH/29532E-02
0.750 -0.103820800781250 -0.080967938337654 2. HEAUB59583E-02
0.875 -0.120213031768799 -0.096837697958757  2.ZBAD04159E-02

0 0 0 0
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Exact
— Approximate | :
I 1

i i
0 0125 0.25 0.375 0.5 0.625 0.7a 0.875 1

Figure 2: Exact and approximate solutions of Example 2 Wwith.125

5] Conclusion

A non-polynomial fractional spline method has beensidered for the numerical
solution of fractional boundary value problem foft)(2). In general, the method
used in paper has been proved effectiveness inngolvactional differential
equations numerically and also solved on two proBldor different value of
n, 4, a, A andg; further more, the results obtained are very eraging. The
method is simple and easy to apply.
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