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ASYMPTOTIC DISTRIBUTION OF EIGENELEMENTS OF
THE BASIC TWO-DIMENSIONAL BOUNDARY-CONTACT
PROBLEMS OF OSCILLATION IN CLASSICAL AND
COUPLE-STRESS THEORIES OF ELASTICITY

T. BURCHULADZE AND R. RUKHADZE

ABSTRACT. The basic boundary-contact problems of oscillation are consi-
dered for a two-dimensional piecewise-homogeneous isotropic elastic medium
bounded by several closed curves. Asymptotic formulas for the distribution of
eigenfunctions and eigenvalues of the considered problems are derived using
the correlation method.

1. In this paper the following notation will be used: R? is a two-dimensio-
nal Euclidean space; * = (z1,23), y = (y1,¥y2) are points in R?*; |z — y| is the
Euclidean distance between z and y; Dy C R? is a finite domain bounded by
the closed curves Sy, Si, ..., Sy, of the class Ay(a), 0 < o < 1 (the curves have a
Holder-continuous curvature), Sy is enveloping all other Sy, while the latters are
not enveloping one another, S;N S, = @ for i # k, i,k = 0, m; the finite domain
bounded by the curve Sy (k = 1,m) is denoted by Dy, Dy = Dy U <k©08k)’

Ek == DkUSk, k= 1,TTL.
If v and v are the m-component real-valued vectors u = (uy,us,...,u,),
v = (v1,v2,...,0,), then uv denotes the scalar product of these vectors: uv =

n n
kzl upvg; |u| = (g:l u?)'/2. The matrix product is obtained by multiplying a
row vector by a column vector; if A = ||A;j||nxn s an n x n-matrix, then
n
A2 = ¥ A?j. Any vector u = (uy,us, ..., u,) is considered as an n x 1 one-
ij=1

column matrix: u = [[t;|lnx1; Ax = [[Ajk|j=; is the k-th column vector of the
matrix A.

The vector u(z) = (ui(x),us(x),...,u,(x)) is called regular in Dy if u; €
CY(Dy) N C?*(Dy), i =1,n.

A system of homogeneous differential equations of oscillation of the classical
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plane theory of elasticity for a homogeneous isotropic medium has the form [1]

82161 82u2
A A *uy =0
a UI+( +M)<al‘% +8]I18I2)+p0 “ ’
0%uy 0%uy

01109 + 03

while a system of homogeneous differential equations of oscillation of the couple-
stress plane theory of elasticity for a homogeneous isotropic centrosymmetric
medium is written as [1, 2]

(1)

pAug + (A + p) ( ) + potuy = 0,

82U1 82U2 Oow

A - 2 _— 2 —

(u+ a)Aur+(A+ p oz)( o7 +8x18:c2)+ oaax2+,00 =0,
Puy Ousy ow )
_ — R frd 2
(1 + @) Aug+ (A + p a><8x10m2+ @x%) 20 axl—i-pa uy =0, (2)
8u2 aul 2

Aw+2a|=———=—] -4 lotw=

(v + B)Aw+ a<8x1 8332) aw + lo*w=0,

where A is the two-dimensional Laplace operator, u(x) = (uq, us) the displace-
ment vector, w a component of the rotation vector, p = const > 0 the medium
density, I = const > 0 inertia moment, o oscillation frequency; A, u, «, v, 3
are the elastic constants satisfying the conditions: p > 0, 3\ +2u > 0, o > 0,
v>0,0>0.

Systems (1) and (2) can be written in the vector-matrix terms

A(0z)u(z) + r0%u = 0, (3)
M (0z)v(z) + fov =0, (4)
respectively, where A(Jx) and M (0x) are respectively 2 x 2 and 3 x 3 matrix
differential operators whose elements are easily defined by virtue of (1) and (2);
v(x) = (u(z),w(®)) = (u1(x), uz(x),w(x)) = (v1, va, v3); 7 and 7 are respectively
the 2 x 2 and 3 x 3 diagonal matrices: = 17451 2x2, P = |7i5]|3xs for r; = 0,
i F Jy T =To2 = p, 133 = 1.
(3) and (4) can be rewritten as
A02)u(z) + o*u(z) =0, M(8z)v(z) + o?v(z) = 0,

~ 1 1 ~ 2 2 . r -z 1 2
where A = Fr 1A !, M =7"'Mr=Y a =7ru, v =70, 7 = l\/Tijllaxe, T =
Iy/Tijllsxs-

The matrix differential operator T'(0x, n(z)) = ||1;;(0x, n(x))||2x2, Where

0 0 0
Tij(0x, n(x)) = An;(z) oz, + pn(x) o T 103 on(z)
and n(z) is an arbitrary unit vector at the point x (if x € Sk, kK = 0, m, then
n(zx) is the external, with respect to Dy, normal unit vector of the curve Sy at
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the point x), is called the stress operator in the classical theory of elasticity,
and the operator TV (0x,n(z)) = | T} (9z, n(x))||sxs, where

T5 (0z,n(x))

= \n;(x)

0
87% + (1 — a)nj(x) o, + (1 + )0y on(z)’

2
Tijy(am, n(z)) = 2« Z gijpni(x), j=3, i=12,
k=1

TH @ n(x) =0, i=3, j=12 TH@rn() =0+ 052

on(x)’
is called the stress operator in the couple-stress theory of elasticity. Here 9;; is
the Kronecker symbol and €;;;, the Levy-Civita symbol.

We assume that the domains Dy (k = 1,mg) are filled with homogeneous
isotropic elastic media with constants Ag, pr, ax, vk, Br, pr, I while the rest

of the domains Dy (k = mgy + 1,...,m) are hollow inclusions. When in the
operators A, M, T, T™ figure A, px, g, Vi, Bi instead of X, u, o, v, 3, then
k ko k

k
we will write A, M, T, T™ respectively.
We introduce the notation

)~ T _ C () — - _
ut(z) = DoalmlinzeSk w(z), k=0,m; u (z)= Dka:lginzesk u(z), k=0,mo.

The notation (T'(9z,n(z)))* has a similar meaning.

2. A matrix of fundamental solutions of the homogeneous equation of oscilla-
tion (3) has the form
Ok

P(w—y.0%)= Hij(J: —Y U2>H2x2’ Tjz —y,0%) = 27
1 02

" 2mpo? O0x,0x;

2 )

)

o H (1{317") - 5 HO (k2r>:| kv] - ]-727

where i is the imaginary unit, » = |z — y|, H(! is the n-th order Hankel
function of first kind with a nonnegative integer n; k; and ko are the non-
negative numbers defined by the equalities k% = po?/(\ + 2u), k3 = po?/u.

A matrix of fundamental solutions of equation (4) is of the form

M (z —y,0%) = [PY(x - y,0?)

3x3’
3
Lz —y,0%) = 27r(;iki a);;(_ll%( 5 — ki) = LB ()
2
895?(%] [2#1}02 EHO (klr)
,u+a g ( kQ)kkj) 9 Ho (kﬂ”)] k,j=12
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F%( r—Y,0 2)

! 0

(e + o) (v + B) (k3 — k3) ng”’a
k=3, j=1,2 or ]—3 k=1,2,

{%Wb> Hy" (ksr),

1 = (=10 — k7)) mi
FM o 2y l H() k
33(1‘ Yy, 0 ) 27T<V+ 5) ~ k?Q) k% 2 0 ( )7
where
2 2 2 2
9 po 9 . 9 po Io® — 4o 4o
= . + + :
P2 P uta v+ (u+a)(v+p5)
1212 po?(Io? — 4ar) 52 po? 52 Io? — 4a
T ke BT T et v f

In what follows we will be interested in the asymptotic behavior of funda-
mental solutions for ¢ — oco. Therefore we take for k3, k2, o5 the following
asymptotic values:

12 po? 5 Io? 9 Io?

) N, 09 = .
n+ P4 2T+

(5)

Due to (5) the matrix of fundamental solutions '™ (z — y, 0?) can be written
in the form (as 0 — c0)

Ok —HO (k)

M 2\
ij(x—y,g)'vm 9

1 o
 2mpo? D

T H ) - ?Hé”(iw)} k=12

«

Mz — %)~
k](‘r y70> 71_0_2(](’“_’_04) V—f—ﬁ

Z kjpa [m H(l)(kﬂ)

_%Z (()1)(/@370)}, k=3, j=1,2 or j=3, k=1,2,

1 T
Lys(z —y,0°) ~ w5 2 Hél)(ksr)‘

Let 54 be an arbitrary real positive fixed number and s > 3¢ an arbitrary
number. For o = i3r we have

Ori [T
i —y, —%2) = 27’:_; { 5 Hél)(ZCQ%T)]

1 0? '
Hé )(iC1%7“) — %Z Hél)(icgm“)}, k,j=12

2mpsc? Oxp0x;

=
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where
=L g=?
01 N )\ + 2,u ’ C2 /‘L ’
Okj )
I‘M N { W }
( - Y, — ) 27T<,LL + CE) 9 0 (ZCQ%’/‘)
! > T (1)
H — 5 Ho kyj=1,2
" 2mp5? O, (icyser) 5 410 (102%7“)}7 Jj =12,
F%<x - Y, — 2)
- 1),
- Y
m2(I(p+ o) — p(v + 3)) Z kip By { (1cgser)
_Zﬂél)(i03%r):|7 k:?), j: 1,2 or J:S’ k= 1727
M@ =y, —2) = 5 |2 Hieger)]
’ 27 (v + ) !
where ¢ = £ A= e & = L.

We will consider two possible cases:

1. ser is bounded for r — 0 and > — oc;

2. ser is unbounded for r — 0 and » — oo.

When s¢r is bounded, taking into account repersentations of the Hankel func-
tion, we have

0" py(x — y, —3¢%) < const
Oz O oo
1+7=n, n=12...; pqg=12

, (6)

Ty (z — y, —3¢*)| < const |In ser|,

The same estimates are obtained for T')! (z — y, —?).
When s is unbounded, we use the asymptotic representation of the Hankel
function for large |z| [3]

/2 n_=x 1
Hr(zl)(z) _ ]2 iz E-T) {1 + O(ﬂ,
mZ z

and the recurrent formula [3] 2L H{V(z) = H,(Ll,)l(z) - H,(Llll(z), to obtain

5’"qu($ - Y, _%2) <

const "

: ' e—a%r’ 7
oxiox), T (7)
1+7=n, n=0,1,2,...; p,q=1,2,

where a =c; — 6 >0, 6 < %cl is an arbitrary positive number;

M 2
oI (x —y, —» )’ o consts"

. - _— )
0xiox?, Vr
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where b =c¢* — 4, < %c* is an arbitrary positive number, ¢* is the smallest of
the numbers ¢y, ¢, c3.

3. Let x,y € Di, kK = 0,mqy and ly be the distance from the point y to the
boundary of the domain Dj. We denote p,(x) = max{r, ly} and introduce the
auxiliary matrix

f )= [1- (1- ) i ) 8
r—y,—»x)=|1—(1- T —y,—x).
Py ()

Let us denote by K(y,ly) the circle of radius ly and center at the point ¥,
and by C(y, ly) the boundary of this circle. We easily find that (1—r™/p}*(x))"
vanishes together with its derivatives up to (n — 1)-th order inclusive when
the point x € K(y,ly) tends to a point of the boundary C(y,ly). For z €

Dp\K(y,ly) we have 1 — (1 — 1™ /p*(x))" = 1 and

lim [1—(1— r H:l'
K(y,ly)31—2€C(y,ly) P ()

o~

K ks
Therefore I'(x — y, —3?) = ['(z — y,—»?) for & € Dy\K(y,ly), while, in
k

crossing the boundary C(y, ly), the function I" and its derivatives up to (n —1)-
th order inclusive remain continuous.

2
We write the function I' in the form

=)

(x —y,—»%) = llg(x -, —%2)<n py;?(f;) + .. )

~

k

It is easy to verify that for x = y the function I' and its derivatives up to

(m — 2)-th order inclusive are continuous. By virtue of (6), for z € K(y,ly),
when s is bounded, we have the estimates

k
const 7% | T py(x — y, — %)  const rmee
ofm ’ i Yopd - m
el Ozt O, Ly

Z"—j:Sa m23+1a paq:1727

, (9)

‘llim@ - Y _%2)’ <

where « is an arbitrary number, 0 < a < 1.
When 1 is unbounded, by virtue of (7) we have the estimates

axr
m—

&
O*Tpy(x —y, —3*)| _ const s’e”
oz’ 0z} - N

o~

NI

k
Analogous estimates hold for I'M (x — y, —5?).
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4. Let us calculate the limit

k k
lim [F(az —y, =) —I(x — v, —%g)}, x,y € D, k=0,mg.

r—y

Using the expansion

fﬁ%@:h@%+—h () @+2+”_+k_07
™ E—0 !

where v is the Euler’s constant,

0o _1)k 2% 2 A 6
Z < ) =1— + — 4
s 22(1N2 - 24(2h)2  26(3!)2

: . 2 —c5) 5, #(d—c) 4
Io(icyser) — Io(icgser) = 22(11)2 e+ 21(21)?
and the following evident relations
0%r? icy2er icy

=20, In =In 7—1—111%—1—1117’

2

for p, ¢ = 1,2 we have

Y k 1 P
lim [qu(x —y,—3%) = Tz — 9, —%g)} = —— 0y, In =

=y 27 g, >
1 1 1 P 1 1 1 .
om(rg ) = ) 11
+47T P4 )\k‘i_zﬂk 12973 . x 4 /\k —i—2,uk + 1927 pg 1 y ( )
Quite similarly, we obtain
ko 2 L5y 2
EQF (x—y,—») —Tol(x =y, —54)
1 1 1 P
= — Opg IN — =1,2 12
47T</\k+2,uk+uk—|—ak) pg T Pl T (12)
lim [I&M(m —y, =) — fM(m - —%2)} _ 11 In 22
gy L33 Y 33 Y= o vk + B s

5. Further we will investigate the first problem. The other problems are con-
sidered similarly.

The 2 x 2 matrix G(z,y, —33) = G(x y,—2), v € Dy, y € D = :L_JOODk,
x # 1y, k = 0,mg, denotes the Green tensor of the first basic boundary value

k
problem of the operator A(0z) — 32 E (F is the 2 x 2 unit matrix).
According to [4], G(x,y, —3Z) possesses a symmetry property of the form

G(ZL‘ Y, — ) GT<y7‘r _%0> (13)
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where the symbol T denotes the matrix transposition operation. Moreover, we
obtain the estimates [5]

V(x,y) € Dy X Dy i Gpy(z,y,—354) = O(| In|z —y| |>,

d ) . . S (14)
ax.GPQ(x7ya_%0) :O(‘l’—y‘ )a b,q,) = 1727 k:(),mo-
J

In a similar way we can define the Green tensor of the first basic boundary-

k
contact problem of the operator M(dz) — 3 FE (E is the 3 x 3 unit matrix)
GM(z,y, —33) which is of size 3 x 3. This tensor has property (13) and estimates
(14) hold for it.

6. Let u(r) = zkz(x) and v(x) = 113(95), x € Dy be arbitrary regular vectors of
the class C'(Dy,) N C?(Dy). Then we have the Green formula [4]
mo k k
Z/ [6AL+ E(5,4)) do
k=075,
0 mo 0 k
_ / DRI S+ / [0r(rh)* — 6-(Th)] as. (15)
s k=1g,
where S = S (k:nLIJO“Sk) and
E kb s (0, OU v, O v, O
E _ et s T Wit it s ) 16
(v,4) %:1 (“’“ 8z, 0z, " 8z, 9z, | "* Bz, ba, (16)
We can rewrite (16)
k k k k
E bk 3k + 2 (81}1 (%2><8u1 8u2>
E =
(U7U) 3 81‘1 + 8172 8171 + 6.772
k k k
(%p Eh)q) <6up E)uq>
+h Z (&ch N Oz, /) \ Oz, i oz,
k k k
Jips 8vp 8vq> (8up auq)
— — — . 17
* 3 ; (8xp Oz, /) \0x, Oz, (17)

k k
Tt follows from (17) that E(5, &) = E(h.5) and B(5,4) > 0.

For the regular vector u(x) in Dy, k = 0,mg, we have the integral represen-
tation [4]

2k

vy Dy A)z—f/?ﬂ =) [An)(e) b))

+ [ [Bste = v =) (T2 n(2))
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8 ()T 0% ()T — v, —%2)] 4.5

b ()T 02 ()T (= — v, —%2)] 4.5 j=12  (18)

In the couple-stress theory of elasticity, formulas analogous to (15) and (18)
k k
are valid. To write these formuals, in (15) and (18) A is to be replaced by M,
k k k k
T by TM, and FE by EM where
k
B (5, )

2 ov, O, . Ob, O
— I Ylp | YU g _
p%; [(Mk o) Oz, Ox, T Oz, Oz, + (e — )

k k k k
vy 0 ou, 0
_Qak<"’2 _ 7“)53 + 20%(‘“ _ “2)53

o0, 85(1}
Oz, Oz,

oxq 0o 0o Oy
O Otz O Ol
v+ ) (3;1) 8xj * 8xz 8x2) + 4ak53ﬁg’

u(zr) = Z(m) and v(zr) = ij(x) are arbitrary three-component regular vectors in

kopok k kv ok k kovk k
Dy, (k= 0,mg). Note that E*(v,u) = EY (u,v) and EY(v,v) > 0.

7. 'To establish the asymptotic behavior of eigenfunctions and eigenvalues, it
is necessary to estimate the regular parts of the Green tensors as »x — oo. For
this we consider the functional

Llu] = go: / [E(ﬁ, G+ %252} dr — 2 %/ Fﬁ(z)%(@z, n(z))lgj(z — 1y, — )
k=07, k=13
() T(02,n(2)T (2 — v, —%2)} 4.5, (19)

where 7 = 1,2 is a fixed number, y an arbitrary fixed point in Dy, k = 0, my.
Functional (18) is defined in the class of regular vector functions in Dy (k =

0, mg) satisfying the conditions:
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) Vz € 8 0t (2) —fi(2) = Ty(z — g, —32) = Ty (2 — g, —542),
(Th()" - (The))

— P02 n(2)D (2 — g —52) — Tz, n(2Ny (2 — g, —52), k= T, me:

0
2)Vz e Sy : u*( )=T(z—y,—3*), k=0,mo+1,....,m
Quite similarly, we introduce the functional L*[u] for the couple-stress theory.

k
For this u(z) is assumned to be a three-component vector and in (19) F is
k ok k k k
replaced by EM, T by T and T; by I'}'.

Theorem 1 (see [6]). The functional L takes the minimal value at u =
gj<x7 Y, _%2)'

The similar assertion is valid for the functional L.

Theorem 2. The estimate

const
’gjj<y7y7 _%2) - gjj(y7y7 _%3) S ll/T_H; y Y € D7 o> 07 (20)
Yy

holds for the function g;;(y,y, —»*).

Proof. We write formula (18) for u;(z) = g;;(z,y, —3?) and T;(x — y, —»?) =
Gj(z,y,—?). Then, taking into account the boundary and contact conditions
for g and G, we obtain

Vo e Dy gy, —%2)
0

-/ [rj(z — g, 302, n(2)) Gy (2,3, — )] =

0 0 0
G (2,2, —5")T(9z,n(2))Tj(z —y, =)

J

=3 [ [ = =) (P02 ()G =)

—I'i(z — v, —%2)@&(82, n(z))(gj(z, x, —%2)} d.S. (21)

Using (15) for u = v, we can rewrite (19) as

Z/ 8x1kL )—%u d:B—l—/ +sz
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23 [ [+ )Tz ()T (= — )
k:lsk
L ()T(02,n(=))T5 (2 — v, —%2)} 4.5, (22)

k:lS
Tz — g, ) (T(020(2)) G (2, . %2))‘} 4.9 (23)

By virtue of (23) formula (21) gives

gjj(ya Y, —%2)
0 50 0 )
= Llgj] — /Fj(z — vy, —2")T(0z,n(2))Tj(z —y,—3)d,S
S

k=14,
k k k
—T(2 —y, —3*)T(02z,n(2))L(z — y, — )| d.S. (24)

k
The vector I'j(z — y, —»?) defined by (8) belongs to the definition domain
of the functional L and, since g;(z,y, —3?) imparts the minimal value to the
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functional L, it is obvious that

Llg;] < L[]
Now from (24) we have
955y y, =)
~ 0 00 o 0 00 k kk
< LD - /rorj ds + Z/ [,IT, ~T,7T,]dS, ye D (25)

~ ~ ~ 975 0 0
L[, = / [;(AL, - 52T,) da + /rorj ds
k(y,ly) s
mo 0 00 k kk
= / T,TT; —I,TT,| ds. (26)
k=14,

Using (26), from (25) we obtain

955(y,y, —") < — / I, (Afj - %ij) dr, y€ Dy, k=0,mo. (27)
k(y,ly)

When s¢r is bounded, taking into account estimates (13) for m = 5, we have

~ const
P =y, =56 < o
v
05y ) o const % const(ser)? “r® _ const
5T =y, =) | < ¢ wl 3 =TE
- const 73 const
- £
Yy Yy

Hence (27) implies

9 const .,  const
gjj (y7 Yy, —x ) S l2+a T Yy = |o
y y

(28)

When 27 is unbounded, taking into account estimates (10) for m = 5, we
have

const
l1/2 )
)

‘fmj<w - Y, _%2)’ <

—axr
5 conste 5_
Bl
NE2
const
2 ?
Iy

[N

’%Qf‘mj(x -, —%2)‘ <

const 3
o 5
Ly

(%7“)3/267(““ <
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~ const z2r = 1 const,
AT (w -y, —s?)| < 2T p5h <
i | T o

Hence (27) implies

const 2 const

2
955, 9, =) < —gp Ty = 1
Yy Yy

We assume that o = § in (28).
Let us estimate ¢;;(y, y, —3*) from below. For this we introduce the following

notation:

Then L[u] = M[u] — 2N[u] and, since > < 3%, we have My[u] < M[u]. Now
L[gj(a:,y, —%2)} = min L[u] = min (M[u] - 2N[u]) >> min (Mo[u] - 2N[u]).

Let the vector function ¢(x,y) impart a minimal value to the functional
Plu] = My[u] — 2Nu]. Then ¢(x,y) belongs to the definition domain of the
functional L and is a regular in the domain Dy (k = 0,mg) solution of the

equation
Vo € Dy A(0x)o(z,y) — sa0(z,y) =0, k=0,mo.

After writing formula (18) for ¢(z,y), where I' = G, we obtain

0 00
V(z,y) € Dp X Dy : @(x,y) = — /Fj(z -, —%Q)TGj(z,y, —%g) d,S
S
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which, by virtue of (6), (14) and the theorem on kernel composition [5], implies

— const 0 const
V(z,y) € Di x Dy : ,<,,‘< (29
(z,y) € Dp x Dy = o(z,y)| < Ty o p(r,y)| < P (29)
k’:O,mo, 1= 1,2
Since
YAV Y 04,90,
Molu] == /u(Au— %Ou> da:‘—i—/u (Tu)™ dS
k=05, 5
<X [0y Yo ko Kr
+ Z/ [u (Tu)™ —u (Tu) } ds,
k=1g,
we have
L{gj (I, Y, %2)} > /Fj(z - Y, _%2>(T90(27 y)) dZS
5
mo 0 0, Lk k _
+ Z/ {F](z -, —%2)(Tg0(z, y)) —T(z -y, %) (Tgo(z, y)) } d,S
k=14,
mo g 500
2 [T(s =y, =TT, (2 — y, )
k=1g,
k k k
—Ti(z —y, —3)TL;(z — v, —%2)] d.S. (30)
By (29) we obtain
0 const const
V(z,y) € Sk X Dy : ’gox,y‘g =
=0 o, YV S oy T -
const
— 0 >0.
Sy
Now (30) gives
const
Llg;] = /240 o> 0.
By representation (24) the latter inequality readily yields the estimate
const
VyeD: g(yy,—»") > —ll/TJﬂ;- (31)
)

Formulas (28) and (31) imply (20). O

By a similar technique we establish estimate (20) for g7 (y, y, —5¢%).
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8. Let us consider the first boundary-contact problem with eigenvalues: Find,

in Dy (k= 0,myg), a regular vector w(z) = @(x) = (1’?}1, 1%2) which is a nontrivial

solution of the equations

k
Vo € Dy : A(@x)ﬁ)(x) + 71]7)@) =0, k=0,my,

and satisfies the contact conditions

Vie S W) = (), (T0:) = (Th=) ", k=T,
and the boundary condition
Vz € Sy : 1%+(z):0, k=0,mo+1,...,m.
We denote this problem by j ~. If in problem j ~ we replace A by M, T by TM

and assume w(z) to be a three-component vector, then the resulting problem

C
with eigenvalues is denoted by I’'.

It can be shown by the known technique [4] that problem I, is equivalent to
a system of integral equations

w(@) = (v +52) [ Gla,y, —sd)wly) dy, (32)

~ 1 1 c
where G = ¥G7r, and problem [ Q/I is equivalent to a system of integral equations

w(e) = (v +54) [ G¥(w,y, —sB)uly) dy, (33)

~ 2 2
where GM = rGMr. By virtue of (13) and (14) equations (32) and (33) are
integral equations with a symmetric kernel of the class Lo(D). Hence it fol-
lows that there exists a countable system of eigenvalues (7, + 36)%%, and
the corresponding (orthonormal in D) system of eigenvectors (w(™ (x))%2, =
(@(")(m))ff:l, x € Dy, k = 0,my, of equation (32). This in turn implies that
()22, and (w™ ()22, are the eigenvalues and eigenvectors of problem I. It
has been established [1] that all 4, > 0. Moreover, in [7] it is proved that the
system (w(™(z))°, forms a complete system in Ly(D). By the properties of a
volume potential we conclude that the eigenvectors are regular. What has been

said above can be repeated for the eigenvalues and eigenvectors of problem [ y .

9. In deriving asymptotic formulas, the Tauber type theorem due to Ikehara
8], [9] plays a decisive role. Let us formulate this theorem for series [9)].

Theorem 3. Let )\, be an increasing sequence of real numbers,
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where a, >0, n=1,2,..., and assume that F(z) can be analytically continued
onto the straight line Re(z) = 1 and has no singularities at the points of this
straight line except for the point z = 1 at which it has a first order pole with the
principal part z%' Then

Z ag ~ A)\n
k=1

By expanding the kernel in eigenfunctions we obtain

- - < w™(z) x w™(y)
Gz, y, —»*) — G(z,y, —2) = (362 — 3 v
(2.9, ~6) = Gla ) = (o =) 3 2l

where x, y € Dy, k = 0, mg, and the symbol x denotes the matrix product of a
column vector by a row vector (the dyad product)

() x w"(y) = || (2)w}” (x)

o (34)

ik=1,2"

After passing in equality (34) to the limit as © — y, we obtain

(4=

1 2 1 1 2 13
= glgurll/ {ﬂ“jj(x —y,—x )T —71(z — 9, _%0)7"}
. [L Nk 2y L
_il_r% [ngj<m’ya_% )T_ngj<x7y7_%0)r]’ (35)
xJJEDk, k:07m07 j:172

Denote
1

L ot L o\ L
h‘j(yv %) = rgjj(ya Y, _%O)T - rgjj(yv Yy, —x )T
= plgi (v, v, —52) — 955y, v, — )]
By (20) h;(») = O(1) as s — oo. Using (11), we have
1 N )L
lim {%T‘jj(:p —y,—x )T — 7l (x — v, —%0)7“}

Ty
. k 2 k 2 x
= lim py [Fy‘j(ﬂf —y,—»") = Ty(z —y, —%0)} =—A,In o (36)

where

Pk 1 1
A :(+), k= 0,m.
a2 ’

Let A = 362 — 5%, 3, = 7 + 26 Let us choose s such that v, + 32 =75, > 0.
Now by virtue of (36) it follows from (35) that

(37)
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> A
R(y,\) = — A ln; +hi(y, \) = —AeIny /1 — — + hj(y, A)
0 0

1 1
= —ApInV=X— Apln [ = — =+ hy(y, \)
w5 A
=—-AV-A+0(Q1) for A= —00, y€ Dy, k=0,mg, j=1,2.

where

Divide both parts of (37) by 2miA* and integrate from £ —ioco to e+ioco, where
0 < e <% (zis a complex-valued parameter whose real part is sufficiently
large). Applying the basic residue theorem, we obtain

e+ic0o

1 Ad) 1
- = <~ . T =~ (38)
2mi Y ’Yn('yn - A)/\Z ’Vriz
Due to (38) we can rewrite (37) as
: 1 Ry, \
= 72 27rz£_ioo N?

We perform the Carleman transformation [10] of the integral in the right-hand
part of (39). The function R(y, \)A~* is analytic on the entire plane except for
the points 0, 71, ¥, . . . and, by the Cauchy theorem, the integral of this function
taken over the closed contour not containing these points internally, is equal to
zero. By the Cauchy theorem the integral in the right-hand part of (39) can be
written as

e+ioc0

/ R(if) i = L/ R(i;m dA + C/ R(i/;k) dA + L/ Blo N gy o)

—1 A
where Ly = (—oo — 0i, —e — 0i), Ly(—e + 0i, —oo 4 07), C' is the circumference
IA| = e. Clearly, A\ = |Ae ™ on Ly, A = |A|e'™ on Ly, and A = ge? on C. We
have

A T o
/ R(i; ) A\ = i€1_z / R(y, Eeze)ez(l—z)e d¢9,
C —T

R<y’ )\) _ wrzooR(y7_)\) R<y7 )\) _ —iwzooR(y’_)\)
[ aa=e /AZdA,L/ L ar= e L2,

L1 3

£

Hence by virtue of (39) and (40)

i W™ (y))?

~ Z
n=1 7’]1
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gl 7 .y sinmz | R(y, —\)
— 10\ i(1—=2)0 )
= _/ R(y, ey g+ 1 / 2, (41)
Integrating by parts we obtain
o0 1-z 1—2z
In v\ N € Ine n € ' (42)
A? 2(z—=1) 2(z-1)?

£

By virtue of (42) we can rewrite (41) as

n=1 PYTL

. B 1—-z 1-z i
_sinm(z = 1) [_Akh“ff e +/O(1)dA]. (43)

2(z—1) 2(z—1)2

m )\z
5

Due to Tkehara’s Theorem 3, (43) gives

S [ ] ~ B =12

p=1

- (p) 2 Pr (1 1> —
g w (y + Yo, Y E Dy, k=0,my. 44
On repeating the above reasoning, we obtain asymptotic formulas for eigen-

vectors of problem I}'. Note only that in this case the eigenvectors (w™(z)),
are three-component and, as follows from (12),

2k 2 2
glcll,ny [Tjjré\?@ - Y _%2>TJJ TJJFM< - Y %O>’r]]:|

1 1
:p’“( + )m”o j=1,2,
Ak 2p ko »”

2k 2 2 k 2 I, 1 P20
li Faal M (0 — 1. — 262V Fan — Taal ™M (2 — 1. — 32\ 7 } = In —.
lim {7’33 33 (T =y, =207 )Ta3 — Tasl '3 (v — y, —35)T33 o v + B n

Therefore in the couple-stress elasticity

i[wﬁ-p)(y)r pk( S >7n, j=1.2, (45)

p=1 8T >\k + 2,uk M —+ o
" 2 Ik 1
> [wé”)(yﬂ ~ir ot B Yoy Y € Di, k= 0,my. (46)

3
Il
—_
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10. From (35) we obtain

R 00 (n) 2 (n 2
s =1 (M + 2) (1 + 55) ~ i ( %0)
Applying the Bessel inequality, we have
55 < G(z,v, d , ¥ € Dy,

- D

which, taking into account estimates (14), implies the existence and uniform
boundedness of the sum of the series

[w (@)]*
Z: (Vn + %0)

in Dy. Now from (47) it follows that

Yy € Dy, k=0,mg: |R(y,s)| < const(s* — s4). (48)

If we integrate (47) in the domain D, then, recalling that the vectors
(w™(z))2, are orthonormal in D, we obtain

—/Ry, dy—%—%oz L

n=1 7”+%2)(7n+%0)
—/Ry, dy—/zAknﬁdy /h . 5

=2Iln— Z Ay mes Dy, — /h]-(y, ») dy. (49)

20 k—o

Denote by (D), that part of Dy (k = 0,mo) where the distance from the
points to the boundary of Dy, is less than n; D, = :L;OO(D;C)n. Now,

/hj(y, ) dy = / hj(y, ») dy—l—/R(y, ) dy+/2Ak In —%% dy, (50)
0
D

D\D,
/2Akln—dy—21n—ZAkmes(Dk) —QIH—ZAk (51)
20 k=0 #0 k=0
/R(y, ) dy < const(sc* — »5) mes D, = (3* — 5)O0(n), (52)
D"'I
[ hity ) dy = O ?). (53)

D\Dy
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The validity of (51) is obvious (52) holds by virtue of (48), while (53) by
virtue of (20). Let A =5 — 5%, = = . Then (51), (52), (53) imply

"0

/2Akn—dy_ZAk <ln\/_+l 1% i)@(i) (54)

[ Ry dy = /\O<)\> _o(1), (55)
[ sl dy = O(A;). (56)
D\D,

On account of (54), (55), (56), from (50) we obtain

mo
/hj(y, ) dy =2 V-AY AkO(i)
p k=0

+21n\/?§0:14k ( >+O( )+O(}\; 5)

By virtue of (57), formula (49) gives

—/R (y,5)dy =2Inv— ZAkmesDk

—~

57)

1 &
+21n —g——ZAkmesDk—an\/ ZAkO()\)

_zln,/lg ! %A;ﬂ( ) +0(1) +0(A;6> — (V).

Hence (47) implies

> 1
RN =AY ————.
) nz::l 7n(7n - )‘>
Divide both parts of (58) by 27iA* and integrate from e — ico to € + ioo,
where 0 < € < 7;. Now in the same manner as above we have

(58)

1—z 7T
Z — = 6 / R*((gei@)ei(lfzw do
n=1 fyn 27T o
1—z = 1—z
sin(z — 1) kzzjo AprmesDplnee kz:jo A mes Dye
T z—1 (z—1)2
ooO 1 ] e —z li6—2
+ / o) d\ + const ——— + const —— + const 1627 . (59)
) N? z 22 5+0—=2
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Applying Ikehara’s theorem, from (59) we obtain

mo
lim o Z A mes Dy,
n—oo 5y, s
or, finally,
n 1 & 1 1
lim — = — (+>mesD. 60
n—eoy, A = PNt 2 : (60)

M
y

no1m 1 1 I
lim — = — ( + )—i— ]mesD. 61
n—ooy,  Am =) [pk Mg+ 2+ oy vk + Ok g (61

If (7,)52, are the eigenvalues of problem I, then, as above, we obtain

To conclude, the results of this paper can be formulated as

Theorem 4. The asymptotic distribution of eigenelements of the basic two-
dimensional boundary-contact problems of oscillation is given by formulas (44)
and (60) in the classical theory of elasticity, and by formulas (45), (46) and (61)
in the couple-stress theory of elasticity.
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