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ANALOGUES OF THE KOLOSOV–MUSKHELISHVILI
GENERAL REPRESENTATION FORMULAS AND

CAUCHY–RIEMANN CONDITIONS IN THE THEORY OF
ELASTIC MIXTURES

M. BASHELEISHVILI

Abstract. Analogues of the well-known Kolosov–Muskhelishvili for-
mulas of general representations are obtained for nonhomogeneous
equations of statics in the case of the theory of elastic mixtures. It is
shown that in this theory the displacement and stress vector compo-
nents, as well as the stress tensor components, are represented through
four arbitrary analytic functions.

The usual Cauchy–Riemann conditions are generalized for homo-
geneous equations of statics in the theory of elastic mixtures.

1. In this section we shall derive analogues of the Kolosov–Muskhelishvili
general representation formulas for nonhomogeneous equations of statics in
the theory of elastic mixtures. It will be shown that displacement and stress
vector components, as well as stress tensor components, are represented in
this theory by means of four arbitrary analytic functions.

The representations obtained here will be used in our next papers to in-
vestigate two-dimensional boundary value problems for the above-mentioned
equations of an elastic mixture.

In the two-dimensional case the basic nonhomogeneous equations of the
theory of elastic mixtures have the form (see [1] and [2])

a1∆u′ + b1 grad div u′ + c∆u′′ + d grad div u′′ = −ρ1F ′ ≡ ψ′,

c∆u′ + d grad div u′ + a2∆u′′ + b2 grad div u′′ = −ρ2F ′′ ≡ ψ′′,
(1.1)

where ∆ is the two-dimensional Laplacian, grad and div are the principal
operators of the field theory, ρ1 and ρ2 are the partial densities (positive
constants) of the mixture, F ′ and F ′′ are the mass force, u′ = (u′1, u

′
2) and
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u′′ = (u′′1 , u′′2) are the displacement vectors, a1,, b1, c, d, a2, b2 are the
known constants characterizing the physical properties of the mixture. We
have

a1 = µ1 − λ5, b1 = µ1 + λ1 + λ5 − ρ−1α2ρ2, a2 = µ2 − λ5,

c = µ3 + λ5, b2 = µ2 + λ2 + λ5 + ρ−1α2ρ1,

d = µ3 + λ3 − λ5 − ρ−1α2ρ1 ≡ µ3 + λ4 − λ5 + ρ−1α2ρ2,

ρ = ρ1 + ρ2, α2 = λ3 − λ4,

(1.2)

where µ1, µ2, µ3, λ1, λ2, λ3, λ4, λ5 are new constants also characterizing
the physical properties of the mixture and satisfying the definite conditions
(inequalities) [2].

In what follows we shall need the homogeneous equations corresponding
to equations (1.1); obviously, they have the form (F ′ = F ′′ = 0 or ψ′ =
ψ′′ = 0)

a1∆u′ + b1 grad div u′ + c∆u′′ + d grad div u′′ = 0,

c∆u′ + d grad div u′ + a2∆u′′ + b2 grad div u′′ = 0.
(1.3)

In the theory of elastic mixtures the displacement vector is usually de-
noted by u = (u′, u′′). In this paper u is the four-dimensional vector, i.e.,
u = (u1, u2, u3, u4) or u1 = u′1, u2 = u′2, u3 = u′′1 , u4 = u′′2 .

The system of basic equations (1.1) can (equivalently) be rewritten as

a1∆u′ + c∆u′′ + b1 grad θ′ + d grad θ′′ = ψ′,

c∆u′ + a2∆u′′ + d grad θ′ + b2 grad θ′′ = ψ′′,
(1.4)

where

θ′ =
∂u′1
∂x1

+
∂u′2
∂x2

, θ′′ =
∂u′′1
∂x1

+
∂u′′2
∂x2

. (1.5)

For our further discussion we shall also need the functions

ω′ =
∂u′2
∂x1

− ∂u′1
∂x2

, ω′′ =
∂u′′2
∂x1

− ∂u′′1
∂x2

. (1.6)

As mentioned above, here we want to represent the solution (i.e., the dis-
placement vector components) of (1.1) and the stress vector components
(calculated by means of the displacement vector) and stress tensor compo-
nents through analytic functions of a complex variable. To this end, for the
basic equations of statics in the theory of elastic mixtures we shall general-
ize the method developed by Vekua and Muskhelishvili for nonhomogeneous
equations of statics of an isotropic elastic body in the two-dimensional case
(see [3] or [4]).



THEORY OF ELASTIC MIXTURES 225

We introduce the following variables:

z = x1 + ix2, z = x1 − ix2,

i.e.,

x1 =
z + z

2
, x2 =

z − z
2

,

where

∂
∂x1

=
∂
∂z

+
∂
∂z

,
∂

∂x2
= i

( ∂
∂z

− ∂
∂z

)

,

∂
∂z

=
1
2

( ∂
∂x1

− i
∂

∂x2

)

,
∂
∂z

=
1
2

( ∂
∂x2

+ i
∂

∂x2

)

.
(1.7)

After performing simple calculations we obtain

∆ = 4
∂2

∂z∂z
, θ′ =

∂w′

∂z
+

∂w′

∂z
, θ′′ =

∂w′′

∂z
+

∂w′′

∂z
,

ω′ = −i
(∂w′

∂z
− ∂w′

∂z

)

, ω′′ = −i
(∂w′′

∂z
− ∂w′′

∂z

)

,
(1.8)

where

w′ = u′1 + iu′2, w′′ = u′′1 + iu′′2 . (1.9)

On account of (1.7), (1.8), and (1.9) we can rewrite (1.4) as two complex
equations

4a1
∂2w′

∂z∂z
+ 4c

∂2w′′

∂z∂z
+ 2b1

∂θ′

∂z
+ 2d

∂θ′′

∂z
= Ψ′,

4c
∂2w′

∂z∂z
+ 4a2

∂2w′′

∂z∂z
+ 2d

∂θ′

∂z
+ 2b2

∂θ′′

∂z
= Ψ′′,

(1.10)

where
Ψ′ = ψ′1 + iψ′2, Ψ′′ = ψ′′1 + iψ′′2 .

Obviously, (1.10) can be rewritten as

∂
∂z

(

4a1
∂w′

∂z
+ 4c

∂w′′

∂z
+ 2b1θ′ + 2dθ′′

)

= Ψ′,

∂
∂z

(

4c
∂w′

∂z
+ 4a2

∂w′′

∂z
+ 2dθ′ + 2b2θ′′

)

= Ψ′′,

which, after applying the Pompeiu formula [4], gives

4a1
∂w′

∂z
+4c

∂w′′

∂z
+2b1θ′+2dθ′′=4ϕ′1(z) +

1
π

∫

D

Ψ′(y1, y2)
σ

dy1dy2,

4c
∂w′

∂z
+4a2

∂w′′

∂z
+2dθ′+2b2θ′′=4ϕ′2(z) +

1
π

∫

D

Ψ′′(y1, y2)
σ

dy1dy2,
(1.11)
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where σ = z − ζ, ζ = y1 + iy2, ϕ′1(z) and ϕ′2(z) are arbitrary analytic
functions which we have represented as derivatives of arbitrary analytic
functions, while multiplier 4 has been introduced for convenience. In (1.11)
D is a finite or infinite two-dimensional domain. In the case of an infinite
domain the functions Ψ′ and Ψ′′ satisfy the definite conditions near the
point at infinity.

Remark. The integral terms (partial solutions) appear in (1.11) by virtue
of the fact that the Pompeiu formula

w(x) =
1
π

∫

D

F (y1, y2)
σ

dy1 dy2

holds (under certain assumptions) for the equation

∂w
∂z

= F = F1 + iF2.

The proof of the Pompeiu formula for both a finite and an infinite domain
D is given in [4].

We shall give one more proof of the Pompeiu formula. Let w = u + iv.
Then, on separating the real and imaginary parts, the equation for w can
be written as two equations:

∂u
∂x1

− ∂v
∂x2

= 2F1,
∂u
∂x2

+
∂v
∂x1

= 2F2.

If we now introduce new functions ϕ and ψ by

u =
∂ϕ
∂x1

+
∂ψ
∂x2

, v = − ∂ϕ
∂x2

+
∂ψ
∂x1

,

the previous system for ϕ and ψ can be rewritten as

∆ϕ = 2F1, ∆ψ = F2.

By the well-known formula for a partial solution of the Poisson equation,
we obtain

ϕ =
1
π

∫

D

ln rF1 dy1 dy2, ψ =
1
π

∫

D

ln rF2 dy1 dy2,

where

r =
√

(x1 − y1)2 + (x2 − y2)2 = |σ|.
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By calculating the partial derivatives of first order for ϕ and ψ we obtain

u =
1
π

∫

D

(x1 − y1

r2 F1 +
x2 − y2

r2 F2

)

dy1dy2,

v =
1
π

∫

D

(

− x2 − y2

r2 F1 +
x1 − y1

r2 F2

)

dy1dy2,

and hence

w = u + iv =
1
π

∫

D

F (y1, y2)
σ

dy1 dy2.

The latter formula coincides with the Pompeiu formula.
Combining (1.11) with the formulas obtained from (1.11), passing to

the conjugate values, and taking (1.8) into account, we obtain, after some
transformations for θ′ and θ′′, the system of equations

(a1 + b1)θ′+(c + d)θ′′=2 Re
[

ϕ′1(z) +
1
4π

∫

D

Ψ′(y1, y2)
σ

dy1 dy2

]

,

(c + d)θ′+(a2 + b2)θ′′=2 Re
[

ϕ′2(z) +
1
4π

∫

D

Ψ′′(y1, y2)
σ

dy1 dy2

]

,
(1.12)

where the symbol Re denotes the real part.
On subtracting the complex-valued values and again taking into account

(1.8), we obtain in a manner similar to the above the following system for
ω′ and ω′′:

a1ω′ + cω′′ = 2 Im
[

ϕ′1(z) +
1
4π

∫

D

Ψ′(y1, y2)
σ

dy1 dy2

]

,

cω′ + a2ω′′ = 2 Im
[

ϕ′2(z) +
1
4π

∫

D

Ψ′′(y1, y2)
σ

dy1 dy2

]

,
(1.13)

where the symbol Im denotes the imaginary part.
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By solving system (1.12) for θ′ and θ′′ we obtain

θ′ =
2
d1

Re
{

(a2 + b2)
[

ϕ′1(z) +
1
4π

∫

D

Ψ′(y1, y2)
σ

dy1 dy2

]

−

− (c + d)
[

ϕ′2(z) +
1
4π

∫

D

Ψ′′(y1, y2)
σ

dy1 dy2

]}

,

θ′′ =
2
d1

Re
{

− (c + d)
[

ϕ′1(z) +
1
4π

∫

D

Ψ′(y1, y2)
σ

dy1 dy2

]

+

+ (a1 + b1)
[

ϕ′2(z) +
1
4π

∫

D

Ψ′′(y1, y2)
σ

dy1 dy2

]}

,

(1.14)

where d1 = (a1 + b1)(a2 + b2)− (c + d)2 > 0.
For the unknown ∂w′

∂z and ∂w′′
∂z system (1.11) gives

∂w′

∂z
= e1ϕ′1(z) + e2ϕ′2(z) +

1
4π

∫

D

(e1Ψ′ + e2Ψ′′)
dy1 dy2

σ
+

+
1

2d2

[

(cd− b1a2)θ′ + (cb2 − da2)θ′′
]

,

∂w′′

∂z
= e2ϕ′1(z) + e3ϕ′2(z) +

1
4π

∫

D

(e2Ψ′ + e3Ψ′′)
dy1 dy2

σ
+

+
1

2d2

[

(cb1 − da1)θ′ + (cd− a1b2)θ′′
]

,

(1.15)

where

e1 =
a2

d2
, e2 = − c

d2
, e3 =

a1

d2
, d2 = a1a2 − c2 > 0. (1.16)

From (1.14) we obtain by elementary calculations

1
2d2

[

(cd− b1a2)θ′ + (cb2 − da2)θ′′
]

=

= Re
[

e4ϕ′1(z) + e5ϕ′2(z) +
1
4π

∫

D

(e4Ψ′ + e5Ψ′′)
dy1 dy2

σ

]

,

1
2d2

[

(cb1 − da1)θ′ + (cd− a1b2)θ′′
]

=

= Re
[

e5ϕ′1(z) + e6ϕ′2(z) +
1
4π

∫

D

(e5Ψ′ + e6Ψ′′)
dy1 dy2

σ

]

,

(1.17)
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where

e4 =
(c + d)(da2 − cb2) + (a2 + b2)(cd− b1a2)

d1d2
,

e5 =
(a1 + b1)(cb2 − da2) + (c + d)(a2b1 − cd)

d1d2
=

=
(c + d)(a1b2 − cd) + (a2 + b2)(cb1 − da1)

d1d2
,

e6 =
(a1 + b1)(cd− a1b2) + (c + d)(da1 − cb1)

d1d2
.

(1.18)

After substituting (1.17) into (1.15), we can rewrite ∂w′
∂z and ∂w′′

∂z in a
simpler form

∂w′

∂z
= m1ϕ′1(z) + m2ϕ′2(z) +

e4

2
ϕ′1(z) +

e5

2
ϕ′2(z) +

+
1
4π

∫

D

(m1Ψ′ + m2Ψ′′)
dy1 dy2

σ
+

1
8π

∫

D

(e4Ψ′ + e5Ψ′′)
dy1 dy2

σ
,

∂w′′

∂z
= m2ϕ′1(z) + m3ϕ′2(z) +

e5

2
ϕ′1(z) +

e6

2
ϕ′2(z) +

+
1
4π

∫

D

(m2Ψ′ + m3Ψ′′)
dy1 dy2

σ
+

1
8π

∫

D

(e5Ψ′ + e6Ψ′′)
dy1 dy2

σ
,

(1.19)

where

m1 = e1 +
e4

2
, m2 = e2 +

e5

2
, m3 = e3 +

e6

2
. (1.20)

Since 1
σ = ∂

∂z (ln σ +ln σ) = 2 ∂
∂z ln |σ|, we obtain from (1.19) by integration

w′ = m1ϕ1(z) + m2ϕ2(z) +
z
2
[

e4ϕ′1(z) + e5ϕ′2(z)
]

+

+ ψ1(z) +
1
2π

∫

D

(m1Ψ′ + m2Ψ′′) ln |σ|dy1 dy2 +

+
1
8π

∫

D

σ
σ

(e4Ψ′ + e5Ψ′′)dy1 dy2,

w′′ = m2ϕ1(z) + m3ϕ2(z) +
z
2
[

e5ϕ′1(z) + e6ϕ′2(z)
]

+

+ ψ2(z) +
1
2π

∫

D

(m2Ψ′ + m3Ψ′′) ln |σ|dy1 dy2 +

+
1
8π

∫

D

σ
σ

(e5Ψ′ + e6Ψ′′)dy1 dy2,

(1.21)
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where ψ1(z) and ψ2(z) are new arbitrary analytic functions.
In the theory of elastic mixtures, formulas (1.21) obtained for the dis-

placement vector components are analogues of Kolosov–Muskhelishvili ge-
neral representation formulas.

If the system of equations (1.1) is homogeneous, i.e., ψ′ = ψ′′ = 0 or
Ψ′ = Ψ′′ = 0, then the integral terms in (1.21) vanish and we obtain the
formulas

w′ = m1ϕ1(z) + m2ϕ2(z) +
z
2
[

e4ϕ′1(z) + e5ϕ′2(z)
]

+ ψ1(z),

w′′ = m2ϕ1(z) + m3ϕ2(z) +
z
2
[

e5ϕ′1(z) + e6ϕ′2(z)
]

+ ψ2(z),
(1.22)

which are anlogues of Kolosov–Muskhelishvili formulas for the displacement
vector components of equation (1.3).

The integral terms in (1.21) are one particular solution of system (1.1).
To rewrite these terms in a different form we introduce the vectors u(0)(x) =
(u′1, u

′
2, u

′′
1 , u′′2) and ψ(x) = (ψ′1, ψ

′
2, ψ

′′
1 , ψ′′2 ). Now, after separating the real

parts, from (1.21) we have

u(0)(x) =
1
2π

∫

D

φ(x− y)ψ(y) dy1 dy2, (1.23)

where

φ(x− y) = ReΓ(x− y), (1.24)

Γ(x− y) =

=

∥

∥

∥

∥

∥

∥

∥

∥

m1 ln σ + e4
4

σ
σ , ie4

4
σ
σ , m2 ln σ + e5

2
σ
σ , ie5

4
σ
σ

ie4
4

σ
σ , m1 ln σ − e4

4
σ
σ , ie5

4
σ
σ , m2 ln σ − e5

4
σ
σ

m2 ln σ + e5
4

σ
σ , ie5

4
σ
σ , m3 ln σ + e6

4
σ
σ , ie6

4
σ
σ

ie5
4

σ
σ , m2 ln σ − e5

4
σ
σ , ie6

4
σ
σ , m3 ln σ − e6

4
σ
σ

∥

∥

∥

∥

∥

∥

∥

∥

.

Here φ(x − y) is a fundamental matrix. Each term of matrix (1.24) is a
single-valued function on the entire plane and has at most a logarithmic
singularity at the point x = y. By direct calculations it can be proved that
each column of the matrix φ(x− y) (considered as a vector) is a solution of
system (1.3) with respect to the cordinates of the point x for x 6= y. It is
obvious from (1.24) that φ(x− y) is a symmetric matrix.

Now we shall derive general complex representations for the components
of the stress tensor and stress vector in the theory of elastic mixtures. As
is known from [2], using the displacement vector u = (u′1, u

′′
2 , u′′1 , u′′2) the

stress vector components can be written as follows:

(Tu)1 = τ ′11n1 + τ ′21n2, (Tu)2 = τ ′12n1 + τ ′22n2,

(Tu)3 = τ ′′11n1 + τ ′′21n2, (Tu)4 = τ ′′12n1 + τ ′′22n2,
(1.25)
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where n = (n1, n2) is an arbitrary unit vector and

τ ′11 =
(

λ1 −
α2ρ2

ρ

)

θ′ +
(

λ3 −
α2ρ1

ρ

)

θ′′ +

+ 2µ1
∂u′1
∂x1

+ 2µ3
∂u′′1
∂x1

,

τ ′21 = (µ1 − λ5)
∂u′1
∂x2

+ (µ1 + λ5)
∂u′2
∂x1

+

+ (µ3 + λ5)
∂u′′1
∂x2

+ (µ3 − λ5)
∂u′′2
∂x1

,

τ ′12 = (µ1 + λ5)
∂u′1
∂x2

+ (µ1 − λ5)
∂u′2
∂x1

+

+ (µ3 − λ5)
∂u′′1
∂x2

+ (µ3 + λ5)
∂u′′2
∂x1

,

τ ′22 =
(

λ1 −
α2ρ2

ρ

)

θ′ +
(

λ3 −
α2ρ1

ρ

)

θ′′ +

+ 2µ1
∂u′2
∂x2

+ 2µ3
∂u′′2
∂x2

,























































































































(1.26)

τ ′′11 =
(

λ4 +
α2ρ2

ρ

)

θ′ +
(

λ2 +
α2ρ1

ρ

)

θ′′ +

+ 2µ3
∂u′1
∂x1

+ 2µ2
∂u′′1
∂x1

,

τ ′′21 = (µ3 + λ5)
∂u′1
∂x2

+ (µ3 − λ5)
∂u′2
∂x1

+

+ (µ2 − λ5)
∂u′′1
∂x2

+ (µ2 + λ5)
∂u′′2
∂x1

,

τ ′′12 = (µ3 − λ5)
∂u′1
∂x2

+ (µ3 + λ5)
∂u′2
∂x1

+

+ (µ2 + λ5)
∂u′′1
∂x2

+ (µ2 − λ5)
∂u′′2
∂x1

,

τ ′′22 =
(

λ4 +
α2ρ2

ρ

)

θ′ +
(

λ2 +
α2ρ1

ρ

)

θ′′ +

+ 2µ3
∂u′2
∂x2

+ 2µ2
∂u′′2
∂x2

,























































































































(1.27)

where θ′ and θ′′ are defined by (1.5).
Using (1.2), (1.8) and (1.9) and performing some simple transformation,

we obtain

τ ′11 + τ ′22 = 4Re
[

(a1 + b1 − µ1)
∂w′

∂z
+ (c + d− µ3)

∂w′′

∂z

]

,
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τ ′11 − τ ′22 + i(τ ′21 + τ ′12) = 4µ1
∂w′

∂z
+ 4µ3

∂w′′

∂z
,

τ ′21 − τ ′12 = 4λ5 Im
(∂w′

∂z
− ∂w′′

∂z

)

,

τ ′′11 + τ ′′22 = 4 Re
[

(c + d− µ3)
∂w′

∂z
+ (a2 + b2 − µ2)

∂w′′

∂z

]

,

τ ′′11 − τ ′′22 + i(τ ′′21 + τ ′′12) = 4µ3
∂w′

∂z
+ 4µ2

∂w′′

∂z
,

τ ′′21 − τ ′′12 = −4λ5 Im
(∂w′

∂z
− ∂w′′

∂z

)

.

After substituting the expressions for w′ and w′′ from (1.21) into the above
formulas we have

τ ′11 + τ ′22 = 2 Re
{

(2−A1 −B1)ϕ′1(z)− (A2 + B2)ϕ′2(z) +

+
1
4π

∫

D

[

(2−A1 −B1)Ψ′ − (A2 + B2)Ψ′′
]dy1 dy2

σ

}

,

τ ′11 − τ ′22 − i(τ ′21 + τ ′12) = 2z
[

B1ϕ′′1(z) + B2ϕ′′2(z)
]

+ 4µ1ψ′1(z) +

+ 4µ3ψ′2(z) +
1
2π

∫

D

(

A1Ψ′ + A2Ψ′′
)dy1 dy2

σ
−

− 1
2π

∫

D

σ
σ2 (B1Ψ′ + B2Ψ′′)dy1 dy2,

τ ′21 − τ ′12 = 4λ5 Im
{

(e1 − e2)ϕ′1(z) + (e2 − e3)ϕ′2(z) +

+
1
4π

∫

D

[

(e1 − e2)Ψ′ + (e2 − e3)Ψ′′
]dy1 dy2

σ

}

, (1.28)

τ ′′11 + τ ′′22 = 2Re
{

− (A3 + B3)ϕ′1(z) + (2−A4 −B4)ϕ′2(z) +

+
1
4π

∫

D

[

− (A3 + B3)Ψ′ + (2−A4 −B4)Ψ′′
]dy1 dy2

σ

}

,

τ ′′11 − τ ′′22 − i(τ ′′21 + τ ′′12) = 2z
[

B3ϕ′′1(z) + B4ϕ′′2(z)
]

+ 4µ3ψ′1(z) +

+ 4µ2ψ′2(z) +
1
2π

∫

D

(

A3Ψ′ + A4Ψ′′
)dy1 dy2

σ
−

− 1
2π

∫

D

σ
σ2 (B3Ψ′ + B4Ψ′′)dy1 dy2,
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τ ′′21 − τ ′′12 = 4λ5 Im
{

(e2 − e1)ϕ′1(z) + (e3 − e2)ϕ′2(z) +

+
1
4π

∫

D

[

(e2 − e1)Ψ′ + (e3 − e2)Ψ′′
]dy1 dy2

σ

}

,

where

A1 = 2(µ1m1 + µ3m2), A2 = 2(µ1m2 + µ3m3),
A3 = 2(µ3m1 + µ2m2), A4 = 2(µ3m2 + µ2m3),
B1 = µ1e4 + µ3e5, B2 = µ1e5 + µ3e6,
B3 = µ3e4 + µ2e5, B4 = µ3e5 + µ2e6,

(1.29)

and the constants e1, e2, e3 are defined by (1.16).
It is easy to calculate the stress tensor components τ ′11, τ ′22, τ ′21, τ ′12, τ ′′11,

τ ′′22, τ ′′21, τ ′′12 by (1.28). They are expressed through four arbitrary analyic
functions and their derivatives. Since for the time being we do not need the
specific values of the stress tensor components, we shall not write them out.

For the stress tensor components formulas (1.28) are the generalized
Kolosov–Muskhelishvili formulas in the theory of elastic mixtures.

As said above, the four-dimensional vector u(0)(x) defined by (1.23) is a
particular solution of system (1.1). By using this solution one can always
reduce, without loss of generaliy, the nonhomogeneous equation (1.1) to the
homogeneous equation (1.3). Hence in what follows we shall consider only
equation (1.3).

Now the expressions for the stress vector components from (1.25) can be
rewritten in a simpler form. By virtue of (1.2), (1.5) and (1.6), we rewrite
(1.26) and (1.27) as

τ ′11 = (a1 + b1)θ′ + (c + d)θ′′ − 2µ1
∂u′2
∂x2

− 2µ3
∂u′′2
∂x2

,

τ ′21 = −a1ω′ − cω′′ + 2µ1
∂u′2
∂x1

+ 2µ3
∂u′′2
∂x1

,

τ ′12 = a1ω′ + cω′′ + 2µ1
∂u′1
∂x2

+ 2µ3
∂u′′1
∂x2

,

τ ′22 = (a1 + b1)θ′ + (c + d)θ′′ − 2µ1
∂u′1
∂x1

− 2µ3
∂u′′1
∂x1

,











































(1.30)

τ ′′11 = (c + d)θ′ + (a2 + b2)θ′′ − 2µ3
∂u′2
∂x2

− 2µ2
∂u′′2
∂x2

,

τ ′′21 = −cω′ − a2ω′′ + 2µ3
∂u′2
∂x1

+ 2µ2
∂u′′2
∂x1

,

τ ′′12 = cω′ + a2ω′′ + 2µ3
∂u′1
∂x2

+ 2µ2
∂u′′1
∂x2

,

τ ′′22 = (c + d)θ′ + (a2 + b2)θ′′ − 2µ3
∂u′1
∂x1

− 2µ2
∂u′′1
∂x1

,











































(1.31)
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Now, applying (1.12) and (1.13) and introducing the notation

∂
∂s(x)

= n1
∂

∂x2
− n2

∂
∂x1

, (1.32)

which expresses the derivative with respect to the tangent when the point
x(x1, x2) is on the boundary, we obtain from (1.25) with (1.30) and (1.31)
taken into account

(Tu)1 = 2 Re ϕ′1(z)n1 − 2 Im ϕ′1(z)n2 − 2µ1
∂u′2

∂s(x)
− 2µ3

∂u′′2
∂s(x)

,

(Tu)2 = 2 Im ϕ′1(z)n1 + 2 Re ϕ′1(z)n2 + 2µ1
∂u′1

∂s(x)
+ 2µ3

∂u′′1
∂s(x)

,

(Tu)3 = 2Re ϕ′2(z)n1 − 2 Im ϕ′2(z)n2 − 2µ3
∂u′2

∂s(x)
− 2µ2

∂u′′2
∂s(x)

,

(Tu)4 = 2 Im ϕ′2(z)n1 + 2 Re ϕ′2(z)n2 + 2µ3
∂u′1

∂s(x)
+ 2µ2

∂u′′1
∂s(x)

.

Hence, using notation (1.9) and (1.32) and performing some simple trans-
formations, we can write

i(Tu)1 − (Tu)2 =
∂

∂s(x)
(

2ϕ1(z)− 2µ1w′ − 2µ3w′′
)

,

i(Tu)3 − (Tu)4 =
∂

∂s(x)
(

2ϕ2(z)− 2µ3w′ − 2µ2w′′
)

.

After substituting the expressions for w′ and w′′ from (1.22) into the
above formulas we easily obtain

i(Tu)1 − (Tu)2 =
∂

∂s(x)
{

(2−A1)ϕ1(z)−A2ϕ2(z)−

− z[B1ϕ′1(z) + B2ϕ′1(z)]− 2µ1ψ1(z)− 2µ3ψ2(z)
}

,

i(Tu)3 − (Tu)4 =
∂

∂s(x)
{

−A3ϕ1(z) + (2−A4)ϕ2(z)−

− z[B3ϕ′1(z) + B4ϕ′2(z)]− 2µ3ψ1(z)− 2µ2ψ2(z)
}

,

(1.33)

where A1, A2, A3, A4 and B1, B2, B3, B4 are defined by (1.29).
Thus for the stress vector components we have obtained a general rep-

resentation expressed in terms of analytic functions. For the stress vector
components in the theory of elastic mixtures these formulas are the gener-
alization of the Kolosov–Muskhelishvili formulas.

Formulas (1.33) imply that M. Levy’s theorem does not hold in the theory
of elastic mixtures, i.e., the stress vector components depend on constants
characterizing the physical properties of an elastic mixture.
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In the theory of elastic mixtures, in addition to the stress vector, much
importance is also attached to the so-called generalized stress vector

κ
Tu = Tu + κ ∂u

∂s
, (1.34)

where Tu is the stress vector, ∂
∂s is defined by (1.32), u is the four-dimensional

displacement vector, and κ is the constant matrix:

κ =

∥

∥

∥

∥

∥

∥

∥

∥

0 κ1 0 κ3

−κ1 0 −κ3 0
0 κ3 0 κ2

−κ3 0 −κ2 0

∥

∥

∥

∥

∥

∥

∥

∥

, (1.35)

where κ1,κ2,κ3 take arbitrary real values. We have written an arbitrary
matrix κ in form (1.35) (some of its term are zero) due to system (1.3);
this is the highest arbitrariness that system (1.3) can provide. Note that
analogous generalized stress vectors were introduced by us for equations of
statics of isotropic and anisotropic elastic bodies in our earlier studies.

Let us consider some particular values of the constant matrix κ. In

(1.35) we write κ1 = κ2 = κ3 = 0, i.e., κ = 0. In that case
◦
T ≡ T and the

generalized stress vector coincides with the stress vector. Assuming now
that κ1 = 2µ1, κ2 = 2µ2, κ3 = 2µ3, we obtain κ = κL and denote the
generalized stress vector by L. In view of the above calculations we have

(Lu)1 =
[

(a1 + b1)θ′ + (c + d)θ′′
]

n1 − (a1ω′ + cω′′)n2 =

= 2 Re ϕ′1(z)n1 − 2 Im ϕ′1(z)n2,

(Lu)2 = (a1ω′ + cω′′)n1 +
[

(a1 + b1)θ′ + (c + d)θ′′
]

n2 =

= 2 Im ϕ′1(z)n1 + Re ϕ′1(z)n2,

(Lu)3 =
[

(c + d)θ′ + (a2 + b2)θ′′
]

n1 − (cω′ + a2ω′′)n2 =

= 2 Re ϕ′2(z)n1 − 2 Im ϕ′2(z)n2,

(Lu)4 = (cω′ + a2ω′′)n1 +
[

(c + d)θ′ + (a2 + b2)θ′′
]

n2 =

= 2 Im ϕ′2(z)n1 + Re ϕ′2(z)n2,

where

i(Lu)1 − (Lu)2 = 2
∂ϕ1(z)
∂s(x)

, i(Lu)3 − (Lu)4 = 2
∂ϕ2(z)
∂s(x)

. (1.36)

Since (1.34) implies

Lu = Tu + κL

∂u
∂s

,
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the generalized stress vector can be rewritten as

κ
Tu = Lu + (κ − κL)

∂u
∂s

,

which by virtue of (1.36) yields

i(
κ
Tu)1 − (

κ
Tu)2 =

∂
∂s(x)

[

2ϕ1(z) + (κ1 − 2µ1)w′ + (κ3 − 2µ3)w′′
]

,

i(
κ
Tu)3 − (

κ
Tu)4 =

∂
∂s(x)

[

2ϕ2(z) + (κ3 − 2µ3)w′ + (κ2 − 2µ2)w′′
]

.
(1.37)

Let us consider one more specific value of the constant matrix κ which is
important for studying the first boundary value problem in the theory of
elastic mixtures. Assume that in (1.37)

κ1 − 2µ1 = −m3

∆0
, κ2 − 2µ2 = −m1

∆0
,

κ3 − 2µ3 =
m2

∆0
, ∆0 = m1m3 −m2

2.
(1.38)

Then we have κ ≡ κN , and we denote the generalized stress vector by N .
Performing simple calculations we obtain from (1.37)

i(Nu)1 − (Nu)2 =
∂

∂s(x)

{

ϕ1(z) + z[ε1ϕ′1(z) + ε2ϕ′2(z)]−

− m3

∆0
ψ1(z) +

m2

∆0
ψ2(z)

)

,

i(Nu)3 − (Nu)4 =
∂

∂s(x)

{

ϕ2(z) + z[ε3ϕ′1(z) + ε4ϕ′2(z)] +

+
m2

∆0
ψ1(z)− m1

∆0
ψ2(z)

)

,

(1.39)

where

ε1 =
e5m2 − e4m3

2∆0
, ε3 =

e4m2 − e5m1

2∆0
,

ε2 =
e6m2 − e5m3

2∆0
, ε4 =

e5m2 − e6m1

2∆0
,

(1.40)

and e4, e5, e6 and m1,m2, m3 are defined by (1.18) and (1.20), respectively.
Using the values m1,m2,m3 and e4, e5, e6, we obtain, after obvious cal-

culations, the following new expressions for the coefficients εk (k = 1, 4):

δ0ε1 = b1(2a2 + b2)− d(2c + d), δ0ε3 = 2(da2 − cb2),
δ0ε2 = 2(da1 − cb1), δ0ε4 = b2(2a1 + b1)− d(2c + d),

δ0 = (2a1 + b1)(2a2 + b2)− (2c + d)2.
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The application of the generalized stress vector we have introduced here will
be discussed in our future works.

2. In this section the usual Cauchy–Riemann conditions will be generalized
for homogeneous equations of statics in the theory of elastic mixtures.

First we introduce the vectors

ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8)

and
ψ = (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7, ψ8),

where

ϕ1 =
∂u1

∂x1
, ϕ2 =

∂u2

∂x2
, ϕ3 =

∂u3

∂x1
, ϕ4 =

∂u4

∂x2
,

ϕ5 =
∂u1

∂x2
, ϕ6 =

∂u2

∂x1
, ϕ7 =

∂u3

∂x2
, ϕ8 =

∂u4

∂x1
,

ψ1 =
∂v1

∂x1
, ψ2 =

∂v2

∂x2
, ψ3 =

∂v3

∂x1
, ψ4 =

∂v4

∂x2
,

ψ5 =
∂v1

∂x2
, ψ6 =

∂v2

∂x1
, ψ7 =

∂v3

∂x2
, ψ8 =

∂v4

∂x1
,

(2.1)

where u = (u1, u2, u3, u4) and v = (v1, v2, v3, v4) are arbitrary differentiable
vectors.

Definition. The vectors u and v will be said to be conjugate vectors
or to satisfy the generalized Cauchy–Riemann conditions if the following
conditions are fulfilled:

aϕ = bψ, (2.2)

where

a =
(

A, 0
0, B

)

, b =
(

0, C
D, 0

)

, (2.3)

A =

∥

∥

∥

∥

∥

∥

∥

∥

a1+b1, a1+b1−m3
∆0

, c + d, c+d+ m2
∆0

a1 + b1 − m3
∆0

, a1 + b1, c+d+ m2
∆0

, c + d
c + d, c+d+ m2

∆0
, a2 + b2, a2+b2−m1

∆0

c+d+ m2
∆0

, c + d, a2+b2−m1
∆0

, a2 + b2

∥

∥

∥

∥

∥

∥

∥

∥

,

B =

∥

∥

∥

∥

∥

∥

∥

∥

−a1, a1 − m3
∆0

, −c, c + m2
∆0

−a1 + m3
∆0

, −a1, −c− m2
∆0

, c
−c, c + m2

∆0
, −a2, a2 − m1

∆0

−c− m2
∆0

, c, −a2 + m1
∆0

, a2

∥

∥

∥

∥

∥

∥

∥

∥

,
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C =
1

∆0

∥

∥

∥

∥

∥

∥

∥

∥

m3, 0, −m2, 0
0, −m3, 0, m2

−m2, 0, m1, 0
0, m2, 0, −m1

∥

∥

∥

∥

∥

∥

∥

∥

,

D =
1

∆0

∥

∥

∥

∥

∥

∥

∥

∥

m3, 0, −m2, 0
0, m3, 0, −m2

−m2, 0, m1, 0
0, −m2, 0, m1

∥

∥

∥

∥

∥

∥

∥

∥

.

In (2.3) the symbol 0 denotes a four-dimensional matrix all of whose terms
are zero.

The matrix equation (2.2) immediately implies that if v a twice contin-
uously differentiable vector, then the vector u satisfies the homogeneous
equations (1.3).

Let us now prove

Theorem. Conditions (2.2) remain valid if the vectors ϕ is replaced by
ψ, and the vector ψ by (−ϕ). This means that the vector u must be replaced
by v, and the vector v by (−u).

Proof. By (2.2) we have
ψ = b−1aϕ,

where

b−1 =
(

0, m
E, 0

)

,

m =

∥

∥

∥

∥

∥

∥

∥

∥

m1, 0, m2, 0
0, m1, 0, m2

m2, 0, m3, 0
0, m2, 0, m3

∥

∥

∥

∥

∥

∥

∥

∥

,

E =

∥

∥

∥

∥

∥

∥

∥

∥

m1, 0, m2, 0
0, −m1, 0, −m2

m2, 0, m3, 0
0, −m2, 0, −m3

∥

∥

∥

∥

∥

∥

∥

∥

.

(2.4)

After long but simple calculations we obtain

ab−1a = −b,

which implies that
aψ = −bϕ.
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From the proven theorem it follows that the vector v is also a solution of
system (1.3).

Now multiply the first equality of (2.2) by n1, the fifth equality by (−n2),
and combine them. Then, recalling the definition of the operator N by
(1.38), we obtain

(Nu)1 =
m3

∆0

∂v1

∂s
− m2

∆0

∂v3

∂s
. (2.5)

Quite similarly, with the operator N taken into account, we find from (2.2)
that

(Nu)2 =
m3

∆0

∂v2

∂s
− m2

∆0

∂v4

∂s
,

(Nu)3 = −m2

∆0

∂v1

∂s
+

m1

∆0

∂v3

∂s
,

(Nu)4 = −m2

∆0

∂v2

∂s
+

m1

∆0

∂v4

∂s
.

(2.6)

Formulas (2.5) and (2.6) can be rewritten as

Nu = m−1 ∂v
∂s

, (2.7)

where m is defined by (2.4) and

m−1 =
1

∆0

∥

∥

∥

∥

∥

∥

∥

∥

m3, 0, −m2, 0
0, m3, 0, −m2

−m2, 0, m1, 0
0, −m2, 0, m1

∥

∥

∥

∥

∥

∥

∥

∥

,

∆0 = m1m3 −m2
2.

(2.8)

By virtue of the above-proven theorem one can easily verify that, along with
(2.7), the formula

Nv = −m−1 ∂u
∂s

(2.9)

is also valid.
Therefore the conjugate vectors u and v satisfy conditions (2.7) and (2.9).
We introduce the notation

w = u + iv; (2.10)

then (2.8) and (2.9) can be written as

Nw = −im−1 ∂w
∂s

,
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which enables us to rewrite (1.34) as
κ
Tw =

[

− im−1 + (κ − κN )
]∂w

∂s
.

For the stress vector we have

Tw = (−im−1 − κN )
∂w
∂s

.

The generalized Cauchy–Riemann conditions written as (2.2) are rather
cumbersome as they contain eight scalar equations. Let us rewrite (2.2) in
a more convenient form. For this we solve the first, third, sixth, and eighth
equations of (2.2) with respect to the vector ∂u

∂x1
and obtain

∂u
∂x1

=

∥

∥

∥

∥

∥

∥

∥

∥

0 A11 − 1, 0, −A12

1−A21, 0, A22, 0
0 −A31, 0, A32 − 1

A41, 0, 1−A42, 0

∥

∥

∥

∥

∥

∥

∥

∥

∂u
∂x2

+

+

∥

∥

∥

∥

∥

∥

∥

∥

A11, 0, −A12 0
0, A21, 0, −A12

−A31, 0, A32, 0
0, −A41, 0, A42

∥

∥

∥

∥

∥

∥

∥

∥

∂v
∂x1

, (2.11)

where

A11 =
m2(c + d) + m3(a2 + b2)

∆0d1
, A21 =

m3a2 + m2c
∆0d2

,

A12 =
m2(a2 + b2) + m1(c + d)

∆0d1
, A22 =

m2a2 + m1c
∆0d2

,

A31 =
m2(a1 + b1) + m3(c + d)

∆0d1
, A41 =

m2a1 + m3c
∆0d2

,

A32 =
m1(a1 + b1) + m2(c + d)

∆0d1
, A42 =

m1a1 + m2c
∆0d2

.

In quite a similar manner, from system (2.11), which is valid by the above-
proven theorem, we obtain

∂v
∂x1

=

∥

∥

∥

∥

∥

∥

∥

∥

0 A11 − 1, 0, −A12

1−A21, 0, A22, 0
0 −A31, 0, A32

A41, 0, 1−A42, 0

∥

∥

∥

∥

∥

∥

∥

∥

∂v
∂x2

+

+

∥

∥

∥

∥

∥

∥

∥

∥

−A11, 0, A12 0
0, −A21, 0, A22

A31, 0, −A32, 0
0, A41, 0, −A42

∥

∥

∥

∥

∥

∥

∥

∥

∂u
∂x1

. (2.12)
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Using (1.2), (1.18) and the formulas

e1 + e4 =
a2 + b2

d1
, e2 + e5 = −c + d

d1
, e3 + e6 =

a1 + b1

d1
,

obtained from (1.16) and (1.18), we have with obvious transformations

A11 + A21 = 2, A12 + A22 = 0,

A31 + A41 = 0, A32 + A42 = 2.

We introduce the notation

A11 = 1− ε1, A12 = ε3, A31 = ε2, A32 = 1− ε4,

where εk (k = 1, 4) is defined by (1.40). Now, by virtue of (2.11), (2.12)
with notation (2.10) taken into account we obtain

∂w
∂x1

= P ∂w
∂x2

, (2.13)

where

P =

∥

∥

∥

∥

∥

∥

∥

∥

i(ε1 − 1), −ε1, iε3, −ε3

−ε1, −i(ε1 + 1), −ε3, −iε3
iε2, −ε2, i(ε4 − 1), −ε4

−ε2, −iε2, −ε4, −i(ε4 + 1)

∥

∥

∥

∥

∥

∥

∥

∥

.

The solution of system (2.13) gives

∂w
∂x2

= Q
∂w
∂x1

, (2.14)

where

Q =

∥

∥

∥

∥

∥

∥

∥

∥

i(ε1 + 1), −ε1, iε3, −ε3

−ε1, i(1− ε1), −ε3, −iε3

iε2, −ε2, i(1 + ε4), −ε4

−ε2, −iε2, −ε4, i(1− ε4)

∥

∥

∥

∥

∥

∥

∥

∥

.

Direct calculations prove that

PQ = QP = E, detP = 1,

where E is the unit four-dimensional matrix.
In what follows by the generalized Cauchy–Riemann condition we mean

(2.13) or (2.14).
Finally, note that for the vector u = (u′1, u

′
2, u

′′
1 , u′′2) we have written

a general representation through four analytic functions in for (1.22). To
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write a general representation for the conjugate vector v = (v1, v2, v3, v4) it
is sufficient to compare (1.39) and (2.7). We obtain

iv1 − v2 = m1ϕ1(z) + m2ϕ2(z)− z
2
[

e4ϕ′1(z) + e5ϕ′2(z)
]

− ψ1(z),

iv3 − v4 = m2ϕ1(z) + m3ϕ2(z)− z
2
[

e5ϕ′1(z) + e6ϕ′2(z)
]

− ψ2(z).
(2.15)

Now, using (1.22) and (2.15), for the components of the vector w = u + iv
we have the following expressions:

w1 = m1ϕ1(z) + m2ϕ2(z) +
z
2
[

e4ϕ′1(z) + e5ϕ′2(z)
]

+ ψ1(z),

w2 = (−i)
{

m1ϕ1(z) + m2ϕ2(z)− z
2
[

e4ϕ′1(z) + e5ϕ′2(z)
]

− ψ1(z)
}

,

w3 = m2ϕ1(z) + m3ϕ2(z) +
z
2
[

e5ϕ′1(z) + e6ϕ′2(z)
]

+ ψ2(z)

w4 = (−i)
{

m2ϕ1(z) + m3ϕ2(z)− z
2
[

e5ϕ′1(z) + e5ϕ′2(z)
]

− ψ2(z)
}

.

Hence we immediately conclude that

w1 + iw2 = 2[m1ϕ1(z) + m2ϕ2(z)], w3 + iw4 = 2[m2ϕ1(z) + m3ϕ2(z)]

are analytic functions.
The application of the formulas derived in this section will be given in

our next works.
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