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ON THE TWO QUESTIONS OF LOHWATER AND
PIRANIAN

M. GVARADZE

ABSTRACT. The problem we are dealing with consists in the following:
find the necessary and sufficient conditions for the zero measure subset
of the circumference at which points the bounded analytic function
has no radial limits.

1. For a function f : D — C analytic and bounded in the unit disk
D=1{z:2¢€C,|z] <1} and any point ¢ € C = {7 : 0 < 7 < 7}
let f(e') = 7hrri f(re'?) denote the radial limit of f. Fatou proved in 1906
that for such a function there exist radial limits except maybe for a set of
points e? of linear measure 0. Conversely, as Lusin showed in [1], for any
set E of measure zero on C there exists a function analytic and bounded in
D having no radial limits at the points of E.

Lohwater and Piranian noticed in [2] that “the set of nonexistence of
radial limit is of second category for some bounded regular functions; it can
even be a residual set on C; but we do not know of any case where a set E
of second category, prescribed without reference to function theory, has been
established as the precise set where the radial limit of some bounded reqular
function fails to exist.”

This is the first question we have to answer in this note. The second one
is connected with the following statement (Theorem 8 in [2]).

Theorem. “Let the set E on C be of types Fy; and G5 and of measure
zero. Then there exists a function f(z), regular and bounded in D, which
has the following properties: for each point €' in E,

lim inf | £(re’”)[ =0, Lim [f(re)| = 1;
T— r—1
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for each point € in C\E the radial limit f(e*®) exists and has modulus 1,
except for a denumerable set of points where f(e??) =0.”

In 1956 Lohwater and Piranian did not know “whether the converse of
the theorem is true.”

Theorems 1 and 2 proved below give answers to these two questions.

2. To prove the theorems we need several lemmas. Some of them are of
independent interest. In what follows

={z: |z—a|<r}, Dla,r)={z: |z—a| <r};

the length of an interval I will be denoted by the same letter I.

Lemma 1. Let zo = €™ and 0 < a < 1.

If z € D(0,1)\D(azp,1 — @), then Re otz <2
20— % 11—«
If z € C(azg,1 — ), then ReZO+Z S
20— 2 l—«
20+ 2 «

>

If z € D(azo, 1 — @), then Re

20— 2 1—a’

If0 <t <m/2, then

1+ re®t <‘ tt‘
sup |——— cot —|.
ogrlg)l 1—rett 2
For0<r<1

zo—|—reit . t—to

—— —icot ‘:

2o — ret

1—1r2 1—r tt—to’
= —1 co .

(1—7r)? +4rsin® 5o Lt 2

Proof. The linear-fractional mapping 2+Z maps the circle C'(azg, 1 — ) on
the straight line 2 = /(1 — «) and the disk D(azg, 1 — «) on the halfplane
{z: Rez > a/(1 — )} which imply the first three assertions of the lemma.
To prove the next inequality note that the straight line containing the radius
{re" : 0 <r <1} is mapped by the mapping 1 Hz on the circle having the
center on the imaginary axis and intersecting thlb axis at the points —i tan &

2
and a = icot 1. The radius itself is mapped onto the smaller arc of this

circle (lying in the first quadrant) with the endpoints 1 and b = 1+e”

e’Lf

Simple analysis of the triangle with vertices 0, a, and b shows that |a] > |b|.
The last assertion is proved as follows (7 =t — tg):

zo +rett . T 1+ ret™ T
o _jcot— = 7—207
zg — rett 2 11— 2
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= 1-r . 2rsinT ' T
= (1*7")2+47"Sin2§ +Z(177”)2+4rsin2% —zcot§ =
- S (l—il_rcotz) O
(1_7“)2+4Tsin2% 147 5)

Lemma 2. p(e",C(a, 1 — @)) > 2asin® L, where p(E, F) is a distance
between the sets E and F, and o € (0, 3).
Proof. 1t is evident that p(e®,C(a,1 —@a)) = e —a| — (1 —a) =
= \/(1 —a)2+4asin® L — (1 — a) > 2asin® L (equality holds if ¢t = km,
keZ). O

o0
Lemma 3. Suppose 0,, = argz, and Z I,|cot &=fn| < co. Then the

function g(z) = Z I, Z"” has a radial limit of modulus one at the point €*
n=

Proof. By Lemma 1, |Z 14 z"”‘ <3 In’ cot %’. Therefore g is

”znfz

continuous on the radius [0, e. O

Let d(E,F) denote an arcdistance between the subsets F and F' of C
and JG be a boundary of G.

Lemma 4. Let G C Gy C Gy be open subsets of the circle. Suppose
G = i’jlfn, Gy = D_c’ljn and z, € I,. If e & Go and d(Jy,, 0Gg) > 2% J,,

then there exists lirn1 I zndre

n —elf *
r—s Zn—Ze€

n=1
Proof. If I,, C Ji, then

Zn + ret?
2y — et

—0, (et ]
2 ’SCOt(efk)’

sup

0
< ‘cot
0<r<1

and therefore

Zn +7"e
Z Z ‘I : 7’67‘9

kicotd(ei(;"]k) Z I, <
=1

k=11,CJy I,CJk
o0
E ‘coti‘ < 00
k=1

Using Lemma 3, we can prove Lemma 4. [

The following lemma is the basic one.
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Lemma 5. Suppose G= EJolIn to be an open set. Let z,, € I,, d(zy,, 01,,) >
I,/4 and let

I Ink
2 Gy <o dm T
ng{n.}
S} .
Then the function g(z) = > In% has radial limit at the point €’ if and
n=1 "

only if the series

Z I, cot arg n (1)

18 convergent.

Proof. By Lemma 3 since the function > In% has radial limit at the
' ng{n} "
point €¥, then without loss of generality we may assume that
lim Ingq Iy 1

=0 .
n—oo [, ’ I, — 2

Denote p, =1 — I,41 and suppose that py_1 < |z| < pn. We have

g —
ZI(zn z —icot argzn)+INzN+z+
-z

ot Zn 2 IN — 2
N E Z r,ntE Z I, cot I =280 —TE )
ZN+1 — 2 N2 Zn

If n > N + 2, then

In Zn + 2 In SQ In S2]\7 nIN+2
Zn — X% 1-— |Z| [N+1 IN+1
whence
n I
Z I Zn + 2 _IN+2 (3)
n=nNt2 % N+l
By Lemma 1
|72 ot S8R | s T ey
Zn — % 0 — arg z,) I,
Therefore
N-1
Zn+2z . 0 — arg z, Iy
In( ti)‘ < 1673 ) 4
‘ Zn — 2 e 2 - 7rIN,l )

n=1
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If lim I, cot % = 0, then by Lemma 1, lim I,2%2 = 0. Thus,

by (3) and (4) the right-hand side of (2) has radial limit if and only if (1)
is convergent.
Finally, if lim I,,|cot H#| > > 0, we have
n—oo

Zn41 + pne’ 1—p%
Relyy1—————— > In >
i ZN41 — pner? Jr1(1 —pn)? +4dpN sinZ%
1—pN 12
> Ingt P _ N+1 7

2 o2 4 712
(1—pn)%+ 4% 1N+ 52l

2 0—0N41 < 112v+1
2 —

since sin 52, where Oy = arg zn41;
0 21 —
Re Iy ZN + PN€‘9 <1In ( ,ON). <
e —pne® = N (1= )2 + dpy sin? TN
2ININ1 2ININy1 . oINt1
> 20—0n2 = 411 /1 5 = 16m v
Apn(F752)2 T 4552 (51N) N

since |0 — O] > LIy, € & In, py > 3.
By the notation ply =1 — \/InInt1 we get
/0 _
ANt PN g 2(1 = ply)

0 SINHI T 9 S
e’ (1= piy)?

Re IN+1
ZN+1 —

Inyi Ing1 _ Inygt

< =
R N oy F (Y

and

Zn + plyet? < 2(1 - ply) _
2y — pyei? = V(I3 (1672)

_ g2 INVININGL gy 2 [INe
2 V Iy

Taking into acount these inequalities we can conclude that the right-hand
side of (2) has no radial limit. [

ReIN

Definition 1. We say that E is an arrangeable set if there exist a count-
able set (2,,n) = (e7n), a sequence of intervals (arcs) (I, ), and a sequence
of positive numbers («y,) satisfying the following conditions:

1. Zmn € In, 4d(Zmn, OLmn) > I;mn;

1,
9. lim ) g m=1,2,...;

3
n—oo mn

3. Ity C _Q(Imi\{zmi}L m=12,...;
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Vs < 27"0mam1d(Inn, 0Gm—_1), m > 1, where G,, = ole(lmn\
{Zmn})a ag \ 0; Zak < 00;
o0 o0
5. E=( N Gp)U( U Qp), where
m=1 m=1

o0
, , 0—06
Qm = {6“9 c e ¢ G, g I,n cot Tmn is divergent}.
n=1

Lemma 6. Let E be an armngeable set. Then the function f(z) =
exp{—g(2)}, with g(z) = Z Im(2), gm(2) = Z Lyn 2222 has no

radial limit on the set E only

Proof. Since

0o 1 0o [e%S) 1 [e%S)
g - E Imn S § — E 272710472”04%14_1 < 0,
[e% A
m=1 " n=1 m=1 n=1

we conclude that f is analytic in the unit disk.
Suppose € ¢ G1. We have

— E t Ormn < E 75 L - -
OL CO . mnd(Imn,aGm_l)
m= n=1 m=2 n=1
o 1 o0 00
Z o Z 274102,02, 1 ATy G 1) < 3 24 < 0.

m=2

Hence by Lemma 3, g — g; has radial limit at €*?, and thus by our basic
lemma we can conclude that ¢ has no radial limit only at Q1.
Now if ¥ € G \Gpms1, m =1,2,..., then

SLI 0 — Opn 1 UL
E —E I | cot < — E — > Ipp < o0,
= ot kn cO 2 | d(e'?,0G,,) o n = 20

and

o0

Z ai ZI’W| cot i _26kn| <

k=m+2 n=1

€3 Sty < 3 ek <

km+2 nl

Therefore arguing as above we come to the conclusion that g has no
radial limit at Q,,4+1. Suppose now that e’ ¢ Or%le, and denote O,, =
m=

U D(amzmn, 1—a2), Cy = 00,,.

n=1
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Let z € Cy, and k < m; then since z & D(a2, zmn, 1 — a2,), we have

2 2
o 2a
o < mMGk < Q.

1 o0
R < — Iin
egk(z)_ak; K l1—«

Further, if z € C,,, and k > m, then according to Lemma 2,

Zkn + 2 2 1 2
Re < < < .
Zn =2 = p(2kn, Cm) a2, sin® Geelmi ™ a2 d%(Iy,, 0Gy-1)
Hence
Regi(z) < - Z 2_2n0‘iai+1d2(fkm 9Gg-1) i <
T oo = a?ndQ(Ikn,c’)Gk_l) -
2
Qe
< % < Q-
Thus, if z € C,,, then
Reg(2) < Yoo+ 30 ammant Y- o
k=1 k=m+1 k=m+1
whence
lim Re g(re’’) = 0. (5)
r—1

Since €'’ € G,,, there exists an integer j such that e € I,,,;. It is clear
that the radius [0, €'?] intersects the circle C((1 — Inj)2m;, Im;) in which
1 Zmj T 7 1

R %) > Re g (re'?) > Re —1 >
eg(re”) 2 Regn(re’?) 2 Re Iy 27— 2 o

Hence, lim,_.; Re g(re?) = oo, which together with (5) gives
lim [fre)[ =0, Tim|f(re”)[=1. O
3. Let us now formulate and prove our theorems.
Theorem 1. There exists an arrangeable set of second category.

Proof. Let @ = {x,} be a countable subset of a unit circle and Gy be an
open subset covering @ and uGo < 27 (u denotes the Lebesgue measure).

Cover x; by the interval J; such that 0J;, NQ = 0 and /J; < 2 'ajan
d(Jy1,0Gy). Let xp, be the first element of the sequence @) not belonging
to Ji. Cover zy, by the interval Js such that 0J, NQ =0, J1 NJs = O,
\/TQ < 2_2a1a2d(J2,8G0), % < %
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Given Ji,Ja, ..., JJp—1, let zx, be the first element of ) not belonging
-1
to :L_Jle. Cover z, by the interval J, such that 0J, N Q = @, J, N

(:gin) =, VI < 27 "a100d(J,, 0Gy), Jiil < % Select 21, such that
21; € Jn,4d(z10,0J,) > J, and z1, € Q. Denote Iy, = J,\{z1,} and
Gi = U L.

Taking G; instead of Gy and arguing analogously, we will obtain new
sequences of the intervals J, and points z,, with the following properties:

(a) zon € Jn,22n € Q;

b) J,NJx =&, n# k;

¢) 4d(zan, Jn) > Jn;

d) VI, < 27 "asazd(J,, 0G1);

¢) lim % =0.

Denote I, = J,\{z2,} and G2 = CCJ_Ollgn.

Repeating the above process for Go, G3, etc., we shall get the sequences
Zmn and I,,, which define the arrangeable set F. If @) is a countable every-
where dense subset, then the obtained set E will be of second category. [

Theorem 2. There exist a set E and a bounded analytic function f with
the following conditions:
(a) E is of G5 type;
(b) E is not of Fy type;
(c) if € € E, then lim |f(re?)| =0, hTri |f(ret?)| = 1;
/r=_>1 r—

(d) the function f on C\E has radial limit of modulus one except a
countable set where the radial limit is zero.

Proof. Consider the Cantor set E without ends on its adjacent intervals. It
is clear that F is of type Gs and not of type F,.
o0
Suppose E = j}ole and > ap < 1. Without loss of generality we may

k=1
assume that the ends of component intervals Iy,, of G; belong to adjacent

intervals of Cantor’s set. Cover every I, N E by an open set Hy,, such that
ViHi, < 27"ayasd(Hip, d11,), where Hy, is a finite union of intervals.
Put R, = oleHm = ]:L)JOlJM. Suppose zyj is the right end of the interval
n= =
J1k~ _
If e ¢ Gy, we have

> 0—01k ad ™
< —_ <
;J1k|C0t 2 < Z Z Jlkd(Hln,aIIn> -

n=1J1xClin
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= NJHln
<
; Hlnaalln ronee

and if €Y € I, then

0 — b1y T = TRy
S ot SR o P L
JieNl =2 d(e ’81171)

Hence, according to Lemma 3 and the fact that intervals contained in I,
are finite, we conclude that fi(z) = exp{—g1(2)}, and

21k + 2
91(2) ZJ
L R

has everywhere a radial limit. Put R{NGy = U Ign We assume again that

the ends of I, belong to the adjacent mtervals of Cantor’s set. Cover every
I, N E by open sets Ha, such that \/uHs, < 2 "asazd(Hay, d12,), where

Hs,, is a finite union of intervals. Put Ry = oleHgn = :Lj)ljzk. Suppose zof
n= =

is the right end of Jog.
If ¢’ ¢ Ry N Go, we have

E Jgk’ cot i < magas
and if €' € I, then
6 — 9% 71'/1R2
J ] ¢ .
Z 2k| €O - d 6“9,812n)

JoxNIzn=0

Hence, according to Lemma 3 and the fact that intervals contained in Iy,
are finite, we conclude that f5(z) = exp{—g2(z)}, and

Z 2ok + 2
92( Ja 22k — &
2 =1

has everywhere a radial limit.

Given Ry, Rs,...,Rpyp—1, put Ry1 NGy, = nOleImn. Assume that the
ends of I,,,,, belong to adjacent intervals of Cantor’s set. Cover every I,,,NE
by open sets H,, such that /uHpm, < 27" amami1d(Hmn, OImn), where
H,,., is a finite union of intervals. Put R,, = nongmn = :le,]mk. Suppose
Zmk 18 the right end of Jp,x.
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fe ¢ R,,_1 N G,,, we have
Z Tk | cot L= 0mk < T Q1 (6)

and if € € I,,,, then

0 — Gmk 7r,uRm
2 Imleot = e o)

JmkNImn =9

The function f,(z) = exp{—gm(z)} with

gn(z) = zjmk e

Zmk — 2

has everywhere a radial limit.

Put - -
1__[ —exp{—ng(z)}.

It is evident that if € = z,,;, then hm f(rew) = 0. Since R,, C G,, and

R,, D FE, then ﬂR = F.

If e ¢ B, then there exists an integer n such that ¢ ¢ R,,. By (6) w
have

- k
E —E Jmk’cot n ‘gw E A1 < 00.
m=n Qm k=1 m=n

S .
Therefore, by Lemma 3, Re > g (re’®) has zero radial limit.
m=n
Suppose finally ¢ € E. Then using the definitions and arguing as in
Lemma 6, we may conclude that

lim |f(re?)] =0, Tm|f(re”)| =1. O
’I”Hl T—
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