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ASYMPTOTIC BEHAVIOR OF EIGENFUNCTIONS AND
EIGENFREQUENCIES OF OSCILLATION BOUNDARY
VALUE PROBLEMS OF THE LINEAR THEORY OF
ELASTIC MIXTURES

M. SVANADZE

ABSTRACT. The asymptotic behavior of eigenoscillation and eigen-
vector-function is studied for the internal boundary value problems
of oscillation of the linear theory of a mixture of two isotropic elastic
media.

INTRODUCTION

The wide application of composite materials has stimulated an intensive
investigation of mathematical models of elastic mixtures. Many interesting
results of theoretical and applied nature, presented mainly in the mono-
graphs [1-3] and the papers [4-8], have been obtained of late for these
models.

Problems of the existence of frequencies of eigenoscillations are studied
in [9-11] for internal boundary value problems of the diffusion and shift
models of the linear theory of elastic mixtures. It is proved that by the
diffusion model eigenoscillations do not arise in some composites, while in
other composites there is a discrete spectrum of eigenoscillation frequen-
cies. By the shift model all internal problems of oscillation have a discrete
spectrum of eigenoscillation frequencies.

Lorentz’s well-known postulate that “asymptotic distribution of eigenos-
cillation frequencies does not depend on a shape of the body but depends
on its volume” was proved by Weyl [12, 13] for two- and three-dimensional
membranes. The same formulas were obtained by Courant [14] by means
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of the variational method and by Carleman [15] who used the properties
of Green functions and Tauber type theorems. The formula of asymptotic
behavior of eigenfunctions was derived in [15] for a three-dimensional mem-
brane.

Weyl [16] proved Lorentz’s postulate for an isotropic three-dimensional
elastic body and developed the law of asymptotic distribution of eigenoscil-
lation frequencies. Plejel [17] proved this law by generalizing Carleman’s
method and obtained formulas for asymptotic behavior of eigenvector-func-
tions and potential energy density. Niemeyer [18] proved the same formulas
by a different method and obtained the best estimate of the second term of
these formulas.

Using Plejel’s method Burchuladze [19-20] proved Lorentz’s postulate for
isotropic, orthotropic, and anisotropic plane elastic bodies, while Dikhamin-
dzhia [21] for two- and three-dimensional isotropic bodies in couple-stress
elasticity. These authors derived asymptotic formulas for eigenoscillation
and eigenvector-function frequencies.

Asymptotic formulas of eigenfrequencies and eigenfunctions for problems
of electromagnetic oscillation were obtained by Miiller and Niemeyer in [22,
23].

Using V. Avakumovié¢’s method asymptotic formulas of eigenfrequencies
and eigenfunctions were obtained in [24, 25] for the first boundary value
problem of different elliptic systems.

In this paper, Plejel’s method is used to prove Lorentz’s postulate for
internal homogeneous oscillation boundary value problems in the shift model
of the linear theory of a mixture of two isotropic elastic materials, and
asymptotic formulas are derived for eigenfrequencies and eigenvector-func-
tions.

1. FORMULATION OF BOUNDARY VALUE PROBLEMS

Let the finite domain € of the three-dimensional Euclidean space R?
be bounded by the surface S, S € La(e), 0 < e < 1 [26], Q = QU S.
It will be assumed that 2 is filled with a mixture of two isotropic elastic
materials [1-3, 7]. The scalar product of vectors f = (fi, fo,..., fr) and
© = (¢1,9p2,...,9r) will be denoted by f - ¢ = 2?21 fi®;, where @, is
the complex-conjugate to the number ¢;, f X @ = |[Vmillkxks Umi = fmer,
m,l =1k, |f| = (Zle f2)1/2. The product of the matrix A = || Aullpxr

k k k
by f denotes the vector Af = (325, A1jfj, D k=1 A2ifis-- s 2251 Apifi);
AT is the transposition of the matrix A. The trace of the square matrix
A = ||Amillkxr will be denoted by Sp A = Z?Zl Aji.
In the absence of mass force, the system of stationary oscillation equa-
tions in the shift model of the linear theory of two-component elastic mix-
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tures has the form [3, 5, 6, 8, 27]

a1 Au' + by graddiva’ 4 cAu” + d grad div v —
_a(u/ . u//) +w2p11u/ . w2p12u// -0, W
cAu' 4 dgrad div u’ + asAu” + by grad div v’/ + )

+a(u’ —u") — w?prou’ + w?pogu’ =0,

where u' = (uf,ub, us), v’ = (uf,ul,uy) are partial displacements, A is the
three-dimensional Laplace operator, w is an oscillation frequency, w > 0,
a>0,

(1) ps—jaz
aj =y — sy by =+ N+ As +
j = Hj 5, 0j = Hj j 5 oL+ po
Pij = pi+ P12, J=1,2, c=pz+As,
o) a
d=ps+ A3+ s — L =3+ A — A5 + P2E2 oy = A3 — As,
p1+ p2 P1 T P2
11, o, 43, A1, A2, . . ., A5 are elastic constants of the mixture [1, 7].

In the sequel it will be assumed that the following conditions are fulfilled
1, 7):

o 2
,u1>0, ,LL1/L2>[L§, A1 — P22 +*M1>Oa )‘5§07
p1+p2 3
p11 > 0, pripaz > pio,
P20 2 pP102 2 (12)
A — + = )(A + + = )>
<1 P VAN TP
P102 2 2
> (A - += ) .
S pit e 31

System (1.1) can be rewritten in the matrix form as
A(Dy,w*)U(z) = [A(D;) + aEy + w?E]U(z) = 0, (1.3)
where
U= (Uy,Us,...,Us) = (W, u"), x=(x1,22,23) €,
‘A(l)(Dz) A®N(Dy)

D
AP = 4@ (p,) 40(D,)

. AY(D,) = ||AY(D.) [l3x3,
6x6

2

8xk6xl’

8xk8xl

A (D,) = a1 Ad + by , AP(D,) = cAby +d
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2
AD(D,) = aydy + by —0— jk1=1,2.3,

8xk8xl
- I p11l  —pial
B = ; = , I =10 ,
’ H I =Ilgs H—Puf p221 g, [eclaxs

01 is the Kronecker symbol.

A vector-function U is called regular in the domain Q if U; € C*(2) N
C'@) (j = T,0).

The internal homogeneous oscillation boundary value problems of the
linear theory of elastic mixtures are formulated as follows:

Problem (K) (K=I, II, II, IV). Find a vector U regular in 2 satisfying
system (1.3) and the homogeneous boundary condition

) o ®
B(D,,n(z))U(z)= lim B(Dgn(z))U(z) =0,

Q5zx—2z€S
where
T for K=I,
(K) P(Dg,n(z)) for K=II,
B (Dg,n(2)) = { P(Dy,n(2)) + 0T for K=III,
I I
, for K=IV,

1) L p2) p@) 4L pB)
6x6

Z = ||0killexs, ¢ > 0, P(D,,n(z)) is the stress operator in the theory of
elastic mixtures [1],

lp p®@ N
P(D"”’n(z)_Hp(Z) PO P =P laxs
PIS)(Dmvn(z)):(ulf)%)(;kz%%-(m +A5)nlai%+()\l_p'?f;2)nké%l7
P£?><Dx,n<z>>=<u3+x5>5kl6‘1+<u3—x5>nl£k+(A3_£f§2)nk;m
Pig?)(Dm,n(Z))=(M2—/\5)5kz§1+(M2+>\5)nl£k+(,\2_pif;2)nk£m7

n=(n1,n2,n3) is the unit normal vector at a point z€S.

The internal pseudooscillation boundary value problems of the linear
theory of elastic mixtures are formulated as follows:
Problem (K)} (K=I, II, III, IV). Find a vector U regular in

satisfying the system of equations

A(Dy, A U(z) =0, x€Q,
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and the boundary condition

(K)
B (D:,n(2))U(2) = f(2), z€5,

where 3 > 0, f is a given six-component vector.

We have

Lemma 1.1. If f € C%91, 0 < 6, < 1, then problem (K)} has a unique
regular solution (K=LILIILIV).

One can easily prove the uniqueness of a regular solution of problem (K);i
by the Green formula [1]

/ U(x) - A(Da)U () + W(U,U)] de = / U(z) - P(Ds,n(2))U(2) d.S, (1.4)
Q s

where W (U, U) is the doubled density of potential energy in the theory of
elastic mixtures [1]. By virtue of conditions (1.2) W (U, U) is a nonnegative
function for an arbitrary regular vector U [1]. The existence of solutions is
proved by the potential method and the theory of singular integral equations
[1, 26].

We introduce the notation

a=a1+b, b=ags+by, co=c+d, dlzab—cg,
dy = araz — ¢, Po = P11P22 — P%za p3 = p11 + p22 — 2p12,

(1.5)
q1 = a+b+2c, q2=apxn+bpi + 2copi2,
g3 = a1 + az + 2¢, g4 = ai1p22 + azpi1 + 2cpia.
On account of (1.2) we obtain by (1.5)
a; >0, a>0, b>0, d; >0,
, — (1.6)
po>0, p3>0, ¢q>0, =12, [ =1,4.
Remark 1.1. If & = 0 then (1.1) implies
div
2 2
@+ )+ (Gv) <o
(1.7)

(A +k2) (A + £2) <mt“/> —0,

rot u”

where k%, k2 and k2, k2 are the roots of the square equations d;£? — w?qa€ +
wpp = 0 and do€? —w?qué +wrpg = 0, respectively. By virtue of conditions
(1.6) we have k¥ > 0 (j = 1,4). Assume that k; > 0 (j = 1,4). By (1.7)
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it is clear that ki, ko and ks, k4 are the wave numbers of longitudinal and
transverse waves, respectively [3]. Let

¢ =wk;', j=T4 (1.8)

The constants ¢; and ¢y will be velocities of longitudinal waves, while cg
and ¢, the velocities of transverse waves [3]. Clearly, c?, ¢3 and %, ¢} are
the roots of the equations

po€® — g€ + dy =0, (1.9)
po&? — qué + dy = 0. (1.10)

Remark 1.2. As is well known [28], by the classical theory of elasticity,
in an isotropic body one longitudinal wave propagates with the velocity
v1 = /(A +2u)p~!, and two transverse waves with the equal velocities
vy = /pup~! (here A, u are the Lamé constants, p is the body density). By
the shift model, in mixture of two isotropic elastic materials the number of
waves increases twofold [3]. For a = 0 two longitudinal waves propagate in
the mixture with the velocities ¢; and ¢y, and four transverse waves with
the velocities ¢ and ¢4 (two pairs of waves having equal velocities) [3].

2. FUNDAMENTAL SOLUTION MATRIX AND SOME OF ITS PROPERTIES

The fundamental solution matrix of the equation A(D,,—3*)U(z) = 0
is constructed in [27] in terms of elementary functions. It has the form

F(l)('ra _%2) F(Q) (J), _%2)
I® (2, —5%) TG (z,—x?)

ﬂﬂ—nr laxs, J=1,2,3,

et

6x6 (2.1)

1
T (@, —5%) = {CT2 (a2 — B3)(A — 52)(A — 53)3 +
(1) 2, (D) (1) 0?
+( AT+ A+ ) 0x,0x) }
1
O (@ —52) = { = (At BB =D (A=)t
(2) 2, , @ & (2.2)
HAT+ A+ 1) Fo )
1
T (2, —2) = {CT2 (@1 = B1)(A = 53)(A — 53)5 +
Bp2 Ba L@ s
( A Atr ) 8xk8xl}

k=123,
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where

Bi=a+3Ppi1, Bo=a+ipa, B3=a+ xpa,

M_b e @ ¢ @ _a a
1_d1 dy’ T d dy T A dy
(1)
9 = d d [2ﬁ2(a2d - Cbz) + ﬁ3(2a2b1 — 2cd — b1b2 d )},
(2) 1
Ty = dids [ﬁ1<a1d - bgc) + 52((121)1 — 2cd + aby — d2) + ﬁg(ald — blc)],
(3) 1
o = d1d2 [51(2(“[)2 — 20d + b1b2 — ) + 262(a1d — blc)],
(1) 1
=TI d (b185 + 2dBafB5 + b233),
(2) 2
r3 = _E (b1B235 + b2p1 32 + dB1 B3 + df33),
(3) 1
L (b33 + 2dB1 B2 + b2/37), Zﬂﬂgy
4 . ) efyrj\w| ] _
ny = l];[% _%l ) vj(xa_%)sz, .7:1747
=

s}, 33 and 53, 3 are, respectively, the roots of the following square equa-

tions
d1€% — (aBs + bB1 + 2¢0B32)E + B1Bs — B3 =0
and
do&? — (a1 + asfB1 + 2¢02)€ + B1Bs — B2 = 0.
By virtue of (1.6) we have »7 >0 (j = 1,4). Assume that s; > 0 (j = 1,4)
and introduce the notation

(0) ~1 (0)

-1

45 = [dl% (%J?*%g g)] y @ = [d2%12(%12*%$—l)] )

(1) o) (2 0 3 (0)
(b% _ﬂ?))%) q; = (CO% +ﬁ2)q]7 q; = (a'% _ﬁl)%v

(2.3)

(a > ©) (2 (3)

q = (az> —Bs) q, qz=—(0%12+ﬁz)qu q = (a1 ﬁl)qz,
1) @) @

Dk =p11qk —2p12qk +p22qk, j=1,2, 1=3,4, k=1,4.

We have

Lemma 2.1. The matriz T'(z, —3?) has the following properties:
(a) FT(xv *%2) = F(Iv *%2)7‘
(b) T(—z, —»?) = T(z, —5?);
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(c) A(D,, —»*)T(x, —»*) = 6(x)I, where §(x) is the Dirac distribution
function;
(d) for = # 0 the matrices T, T3 TG) have the form

2
k
D) (2, —3?) = grad div Z (q]')’Yj (x, —5%) =

j=1

4
k
— rot rot Z (ql)m(x, -, k=1,2,3; (2.4)
1=3

(e) lim Sp{[I(z,—»") —T'(z, —5¢)]|E} = % xM + O(y/ ), (2.5)
€Tr— T
x> 39> 0, 3 — 00;
0° 5
(f) 51 81'3281'53 T (1’, —x )

where ¢* = const > 0, s = s1 + s2 + S3, S1,S2,S3 are nonnegative integer
numbers, ag is a positive number not depending on »x and x,

C*€7a0%|x|

|1’|1+S ’

<

M=c®+ e +2(c5 +¢?). (2.6)

Proof. The validity of properties (a), (b), (c) is proved immediately by
verification.
Let us prove property (d). Taking into account the relations

Ay;(z, —%2) = %?vj(w, —%2),

1 _
Iyj(w, —»*) = s (grad div —rot rot ) v; (z, —?), x#0, j=1,4,
j

we find by (2.2) that

(g Z%{[ (asse? — Ba)(53 — 33) (52 — 53) +
+g”11)%4 + (7‘12)%2 + (7’3)] grad div —

1
dg %]2

(G/Q% ﬂg)(% - %%)(%JQ — 22) rot rot }’yj(a:, -4, (2.7)

Using the relations

1 (1) (1) (1)
ﬁ(agz ﬁg)(% f%f)(%?f%2)+rlz4+r2%]2+r3 =
275

1
= d1%] ( 63)(% - %3)(%2 - %i) .] = 1a47
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which are easy to verify, from (2.7) we obtain

F - Z%{ (b — )2 — )2 — o) e v
1 ) , , .
dos? (aQ% 53)(% — ) (5 — %2)r0tr0t]fyj(x —x?) =
J
21
= Z d1%]2 (b?sz - 63)(%5 — %g)(%f — %i)nj graddiv ’Yj(x, _%2) -
j=1

4
1
=3 (a0 — a)(o — 2N — Aot rot (e, o) =

=3 d2%]
2 (1) ! (1)
= grad divz q;7,(x, —3%) — rotrot Z q iz, —»%).
j=1 1=3

For I = 2,3 the validity of (2.4) is proved similarly to the above.
We shall now prove property (d). Let ®(z,—?) = I'(z,—3?)E. By
(2.1), (2.2) the matrix ® has the form
1 2
6x6
M = p T — p,T? @) = —p, M 4 T3

PG = p TP — p .13 & = —p 1@ 4 T

dB) @

Clearly, Sp ® = Sp(p1:T'™") —2p15,T?) 4 py'®)). Hence on account of (2.3),
(2.4) we obtain

4

2
Sp ®(z, —»*) = Sp [grad div ij’yj(m, —3%) —rot rothml(x, —%2)} =
i=1 1=3
2 ’ 4
= A Y ple ) +2) prule )] =
j=1 1=3

4

2
Zpg%] i, =)+ 2 pag (e, =) (2.8)

=3

Using the equalities Z?zl pj%jz = qod;?, Z?:g pit = qudy t, from (2.8) we
have

4
Sp ®(z, —»°) = 47T|$‘ [Zp] +22pl%l — (> )|$|} +
1=3
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1 [fb 2q4

FO0(el) = g [+ = po(oalal] +0el), lal <1, (29)

d ' dy
where p5 () = Z?:l Dj %? +2 2?23 pi>e;. The relation (2.9) readily implies

iil% Sp [®(z, —5°) — ®(x, —55)] = % [p5(3¢) — ps(300)], 20 >0. (2.10)

Let us now calculate the difference ps(3¢) — p5(s¢) for s > 39 > 0,
3 — o0o. Assume that 72, 75 and 72, 77 are the roots of the square equations
d16% — 322 @€ + 3 po = 0 and d€? — 52 q4€ + »*po = 0, respectively. By (1.6)
we have 77 > 0 (j = 1,4). Assuming that 7; > 0 (j = 1,4), we obtain
T = %6]71 (j = 1,4), where ¢; (j = 1,4) are defined by (1.8). Taking into
account the relations

2 2 2 -1 2.2 4 -1
T +T5 =xqady ", TiTy = % pod]
2 2 2 2

n] + si0 + 35 =71 + T2 + 75 + O(),

1+ 70 = (1 Jr%g)[l +O(%71/2) , 3 — 00,

we find by (2.3) that

1 g2 2:%py  aps
3 2 2
E s = ny + oy + 5) — —7}2
j:1pJ ! %1+%2[d1( ! 1742 + %) dy d
1 mm+7m , 53 34 aps3
= (1 +)+t—— =
2 %1—1—%2(1 2) d1 (501 + 3)

= x(c7? 4 ¢5) + O(V3x), 2 — 0.

Similarly, one can show that 2?23 ot = ez 4 ?)+0(Va), 2 — 0.
Therefore the equality

ps(2) — ps(500) = =M + O(V/5), 2> >0, »x— o0, (2.11)

is fulfilled. Putting (2.11) in (2.10) gives (2.5).

The validity of property (e) can be proved by Plejel’s method used to
investigate fundamental solutions of oscillation equations of the classical
theory of elasticity in [17]. O

3. SOME PROPERTIES OF GREEN TENSORS

The matrix

(K) (K)
G (.’IZ‘, Y, _%2) = —F(.’IJ - Y, _%2) + g (.’IZ‘, Y, _%2)
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will be called the Green tensor of problem (K) (K=I, II, III, IV) if the

K
matrix ( g) satisfies the homogeneous equation

A(Dm, _%2)(1.5)(23:% 7%2) = 07 €,y S Qa

and the boundary condition

(K) (K) 5 (K) 5
B (DZ,H(Z)) g (Z7y7_% ) =B (DZ,H(Z))F(Z —Y,—x )7 Z € S7 ye Q.

K
The matrix (g) (K=L II, IIL, 1IV) is a solution of problem (K)} with
(K) K
a special boundary value f = BT. The existence and uniqueness of ( g)
follows from Lemma 1.1. B N
Let @' = (u}, ub,uh), u”" = (@f,uf,uy), U = (u',u”). Assume that U, U
are the vector-functions with real components. Introduce the notation [1, 7]

;o 1<8u9 +%), v 1(8u;’+aig’),

2 a.’bl 8xj glj o 5 Txl ij
z 1(019+ o), & _1(%’+ iy
by 2 8951 8xj ’ A 2 8xl 61}]‘ ’
hr:}(%f%+%f W)
7 2\0x  Ox;  Om  Ox; )’
g__l<8i§'_aﬁf %_@/) lj=1,2,3
V7 o\0x  Ox; | 0w 0wy )’ K

3
w0 =Y [(Als;l + sl B + 2l Ey + 2uselEy +

1,j=1
+ (Nagy + Aog))EY; + 2u3e ;87 + 2406085 +
a2 / 1" (11 ~ 7
+ ey + prep) (5. — €. —2)\h~h}.
o1+ ps (p2gyy + prey)( jj Jg> 5515

Consider the functions

LU, U= / [(W(U,U)—aUEoU + »*UEU] dz, (3.1)
Q
[o[W(U,U)~aUE,U+*UEUdz=L[U] for K=,
(K) LIU]-2 [(U(z) - PLj(z — y, —¢*)d.S for K=II,
L [U]=1 5 ’ (3.2)

L[Ul+o [4[U(2)-Tj(z —y, —)]?d.S  for K=III,

LU]-2 [gu"(z) - PTj(z — y, —»*)d.S for K=IV,
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where I'; is the jth column of the matrix I', j is some fixed number, j = 1,6,
P =[PH + P2 P2 4 PO)gyq, o > 0.
It is assumed that

(K) ) L= ®)
R={U:UeC*NC'Q), BU(z)=
(K)
= Blj(z—y,—»"), 2€ S, y€ Q} (3.3)

(K)
is the set of admissible vector-functions for the functional L (K=LILIILIV).
Let [17]

~ r mal
Fa—y—) ={1-[1-(—=)" | Jr@-p—), 64
py(x)
where r = |z — y|, py(z) = max{r,{,}, £, is the distance from the point y
to S, while m, [ are natural numbers.
The following lemmas hold.

Lemma 3.1. The matriz I’ has the properties:

~ (K)
a)'; € R, j=1,6, K=LILIILIV;
b) I'j(z -y, —x?) = Lj(z—y, —32) forr > ly;

0° ~ 9 const
C B xr — — e—ozo%’!‘?,,m—s—l orr < g
) oagargany L) < 4 v

m>s+1,12>s+1, s =51+ 82+ 83, 1, 82,53 are negative numbers, ag
is a positive number not depending on s, x, y, and I'; is the jth column of
the matriz T, 5,k =1,6.

The validity of properties (a) and (b) immediately follows from (3.3),
(3.4). Property (c) is easily proved by virtue of Lemma 2.1 and formula
(3.4).

Lemma 3.2. If U and U are vector-functions, reqular in €1, then the
functionals L and L have the properties:

a) L[U) > 0. If LIU] =0, then U(z) =0, z € Q;

b) LU, U] = L[U,U];

d) LU + U] = L[U] + 2L[U, U] + L[U);

¢) [ U-AD,,—*)Udx+ L[U,U] :/5~PUdS; (3.5)
Q S

) £[0,%) = /S - Pl dS, K=LILILIV; (3.6)

~ (D, ~ ) o
(g) ‘C[Umgj] —OfO’I"U—U—gJ, Ue R7]_176
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Proof. The validity of properties (a), (b), (¢), (d) is obvious by (3.1). Re-
lation (3.5) follows from the Green formula [1]

/[ﬁ-A(Dm)U—i—W(U,I})] dxz/(?-PUds.
Q S

(M
IftU = (;-), then from (3.5) we obtain equality (3.6). If U € R, then

the vector U = U — fc]lj) satisfies the boundary condition ﬁ(z) =0,z¢€fS.
Therefore (3.6) implies E[[},(glj)] =0. O

(K)
Lemma 3.3. The functional L has a minimum value only on the vector
K
(gj), z'.e.,
(K) X) (k)
min L [U]= L[g;], K=LILIILIV. (3.7)
ve'w

O -
Proof. U € R,U=U — (gIJ), then by Lemma 3.2 we have
@~ ¢y O ~ ~
L[U] = [L[g; + U] = Llgj] + 2L[g ;, U] + L[U] =
) ~ (I
= Llg;] + L[U] = Llg;].

(I11) () ~
LetUec R,g;=y9g;,U=U—g;. Then

(I11) -~ ~ ~
L [U] :L[gj]+2£[gj,U]+L[U]—2/ngrjds—2/ U-Pr;dS+
S S

+a/[gjfrj]2ds+2o/(gj—rj)-ﬁds+a/ U2ds. (3.8)
S S S

By virtue of (3.2), (3.6) and the boundary condition Pg; +og; = PT'; +
ol'; we find from (3.8) that

(111) (T11) ~ ~ (I11)
D=1 [gj]—|—L[U]—|-G/ %S > L [gj).
s

Quite similarly, equality (3.7) is proved for K=ILIV. Property (a) of
(K)
Lemma 3.2 implies that the functional in the set R has a minimum only
on (5(4) (K=LILIILIV). O

I) (In) (1) IV
Lemma 3.4. The vector-functions érj), (gj), (gj), (gj) satisfy the following

relations:
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AD qrry, () (1)

(a) L[gi'l< L[gjl (3.9)
(D D
() gji(y,y, —»*) = —L[g;]+
+/ Fj(zfy,f%Q) 'Pfj(z—y,fzz) d,S; (3.10)
S
(K) 2 ) (1)
(¢) g5;(y,y,—»°) =—L|[gj]—
- / T(z —y,—3%) - PTi(z — vy, —5*) d. S, K=ILIII; (3.11)
S
(Iv) 2y (1v) (Iv) ! Dt 1" 1" .
(d)  gjj(y,y,—»")=— L [g;’]+ S[Fij—2Fij—I‘ij 1d.S;  (3.12)
0) I @
(e) gji(y,y,—»°) =— L [gj]—
—/ L(z —y,—3%) - PTj(z —y,—»°)d,S; (3.13)
S
(I) (I11) (11)
() 95wy, —3%) < g5 (0, y, =) < g55(y, y, —°), (3.14)
) (1v)
935 (Y, ys =% < g5 (y, y, —22), (3.15)

where y € Q, Iy = (', T, T35), T

7 = (T4, Is;,Te;), P} = (P +
'P(Q))F;, P]{/ _ (7)(2) + P(?’))F;’_

Proof. The validity of property (a) is obvious by virtue of (3.2).
(b) Tt is easy to show that any regular vector U can be represented in
the form

(K) (K)
Uy) = [3 (G .2 —2)PUG) — [P G 2y, —52)] U () oS —
(K)
— | G(y,z,—*)A(D., —*)U(z)dz, (3.16)
Q

x>0, yeQ, K=LILILIV.

) . .
If U = g, then (3.16) implies

m . Lo ,
gjj(y,:%_% ) - = Srj(z_y7_% ) 'PGj(Zayv_% )dZS (317)

On the other hand, by the Green formula (1.4) we have

/U~A(Dm,f%2)Udz+L[U]:/U~PUsz. (3.18)
Q S
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(X)
Hence for U = g; we have
(K) (K) (K)
Ligi] = /S 9i (2,9, —%2) Py (z,y, —*)d,S (3.19)

which on account of (3.17) gives

(1) (1) )
Lig;] = /ng(z,y, —?) - (PG; + Pr;)d.S =

I
= _g(j)j + / T(z—y,—s%) - PTy(z —y, —»*)d,S.
s

11
(¢) Formula (3.16) implies for (gj) that

(1n) (11) (11)
gj (y7y7 _%2) = s Gj(yv Z, _%2) : ng (Zvya _%2> sz =

(n
= / Gy, z, —%). PLi(z -y, —%)d.S.
S

By relation (3.19), from (3.2) we have
D (11 (11) (11) (I1) (1)
L[gj] :L[gj]—2/sgj 'PFjsz=/39j Py d.S —

(1n (1n)
—2/ gj"PFdeS:—/gj"PFjszZ
S S

(I (I1)
= —/ (G] + F]) PFJ sz = 7gjj — / Fj . PF]' sz
S S

The validity of formulas (3.12), (3.13), and (3.11) for K=III is proved
similarly.

(f) Using Lemma 3.3 and relations (3.9) and (3.13), we find from (3.11)
that

an @) (1 (1) (111)
7gjj§ L[gj]—i- ].—‘J’PFJdSS L[gj]+ FJPF]CZS:
s s
(I gy n
=—9g < L [QH/SFJ"PFMS:—QJJ‘-

By Lemma 3.3 and equalities (3.2) and (3.10), from (3.12) we have

av) _ IV @
AR VR R AR

— 1%, - /S [21/ (P} + P/') + TP} — 2T/ P} = T/ P/] dS =
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I I
— 19,1 - /S ()Pl 4+ 20 Py dS = —g. O
. (K) . .
Lemma 3.5. The function g;; satisfies the relation

K st
1950 (v, 5, —%)| < C;% yeQ, §>0, K=LILILIV.  (3.20)
Y

Proof. First we prove the validity of the formula
[ B ) ADs 2T = . —) < 50— d
B(y,ty)
< / T(z —y,—3%) - PTj(z —y, —»?)d.S, (3.21)
s
where B(y, £,) is the ball with center y and radius ¢,.

By property (a) of Lemma 3.2 relation (3.10) implies

(1)
955 (Y, y, — ) dz < /Srj(z —y,—%) - PL(z —y,—3*)d.S. (3.22)

On the other hand, for U = fj formula (3.18) gives

/fj'A(Dmf%Q)fjdx+L[fj]:/f.Pde.
Q s

Hence by Lemma 3.1 we have

L[T;] =—/ij~A(Dm,—%2)fj d:v+/srj~7>rj ds. (3.23)

By Lemma 3.3 and relation (3.23), from (3.10) we obtain
) 5 @O -
955 (y,y, —»*)dz > —L[T;]+ [ T;-PT;dS =
Q
= / ;- A(D,, —»*)T; dz. (3.24)
B(y,ty)
(3.22) and (3.24) imply that (3.21) is valid.
Due to Lemma 3.1 we have
’fmj(ac -, —%2)’ < const ~r4£;5 < const 'Ey_l,
lxzfmj(z -y, 7%2)’ < const ~(:c7")267a0”r2€;5 <
< const -653, m,j = 1,6, (3.25)
Ty =y, —3%) - A(Da, =5)Fj (2 =y, —57)| <

< const ~r2€;6 < const ~€;4.
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With (3.25) taken into account, formula (3.21) readily implies

(I) const
1955 (y, y, = |<€1+5, yeQ, §>0. (3.26)

The inequality

‘ (K) | const

9ji (s y, —3%)| < e yeQ, §>0, K=LILILIV, (3.27)

is proved by the method which in [17] is used to estimate the regular part
of the Green tensor from the second boundary value problem of oscillation
in the classical theory of elasticity.

On account of inequalities (3.14), (3.15), (3.26), (3.27) we easily find that
relation (3.20) is valid. O

In a similar manner, as in the classical theory of elasticity [26], we prove

(K)
Lemma 3.6. The Green tensor G has the property

1), o ®) ,
G (2177:[/,—%): G(y,x7—% )7

where x,y € Q, » >0, K=[LILIILIV.

We introduce the notation

F= ! (o + o)l —pral LG -FdR
—p12l (p22 + v/po)l
It is obvious that the equalities F?2 = E and
®), S ,
g (l‘,y, —x ) = g (ya T, —x ) (328)

are fulfilled.
4. ASYMPTOTIC BEHAVIOR OF EIGENOSCILLATION AND
EIGENVECTOR-FUNCTION FREQUENCIES

Let U be a regular solution of problem (K) (K=LILIILIV). Then in (3.16)
the integral through the surface S is zero. Taking into account the equality

A(Dg, —55)U(y) = —(w* + 55) EU(y), 0 > 0,
from (3.16) we obtain
X)

Ux) = (w? 4 54) /Q G (z,y, —»3)EU(y) dy. (4.1)
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After multiplying (4.1) from the left by the matrix F', by (3.28) we obtain
a system of second-kind Fredholm integral equation with symmetric kernel

(K)
V() = (\ +52) / G (z,y, 2)V (y) dy, (4.2)

where V = FU, \* = w?.
One can easily verify [14] that system (4.2) has a discrete spectrum of

. . (K) (K) (K) .
nonnegative eigenvalues. If wy,ws,...,wm,... are the frequencies of the

eigenoscillations of problem (K) (with their multiplicity taken into account),
(K,1) (K,2) (K,m)
and U , U ,..., U ,... are the corresponding vector-functions, then

K (Kvm)
{(w)?n + 32} 1 and { V }%°_, will be a spectrum of eigenvalues and a

system of eigenvector-functions of Eq. (4.2) and vice versa. It can be as-

K K K K (K,m)
sumed that 0 < (wl) < 54)2) <..., Eul) > 0, lim,,— oo cE),,)l =oo,and { V }>_,;

is a system of orthonormalized vectors

Km) (KD
/ V (y) V (y)dy=2bm, mil=1,23....
Q

(K,m)
Then { U }2_; will be a system of orthonormalized vector-functions with
weight F, i.e.,
(K,m) KD

EU (y) U (y)dy=6m, ml=1,23..., K=LILILIV.
Q

We have
Y .
Lemma 4.1. The matriz G (x,y, po — 53) is the resolvent of the kernel
(K)
G (z,y,—»¢) and the equality

) L 0 ,
g (xaya —x ) - g (xa:% 7%0) =
) L ) ,
:MO/ g (:Evzv_%O) g (Zvya_%O)dZ (43)
Q

is fulfilled, where » > sy > 0, g = 23 — »* < 0.

Proof. Let

(x) e L) ,
H($7y,_% ) = G({E7y7—% )F_ G(.’E,y7—%0)F.

Then for x # y the equalities

5 (&) 2 2 oy oK) 2
A(Dy, —33) G (v,y,—»°)F = (5 — 25)E G (v,y, —»°)F,
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) 2
A(Dy,—35) G (x,y,—35)F =0

imply

2 (&) 2 2 2 (K) 2
A(Drm 7%0)H(‘T,y, - ) = (% - %O)E G (xaya - )F (44)

)
Moreover, H satisfies the boundary condition

(XK) (X) 5
B(D,,n(2)H (z,y,—»") =0, z€S, yeQ,

and the equality

x®) , 1) , , 0 ,
H(x7ya_% ) = G(ﬂfaz’—%o) 'A(Daf7_%0)H(z7ya_% )dZ+

Q
(K) (K)
+ / (G (2,2, —32) - P(Duvn) H (2,y, ) —
S
K

(X) YY) )
- [,P(Dzvn)G(vaa_%O)] ' H(Ivyv_% )}sz (45)
In (4.5) the integral over the surface S is equal to zero. Therefore by virtue
of relations (4.4) and (4.5) we have

(K) ) ) o [ ) (X) 9
H({E,y,—% ):(%O -7 ) G (LE,Z,—%O) EG (Z7yv i )Fdz (46)
Q

By multiplying equality (4.6) from the left by the matrix F' we obtain rela-
tion (4.3). O
(K) (K)
By Lemma 4.1 the matrix G (z,y, —3?) — G (x,y, —»2) can be decom-
posed into the series [14]

(1) Lo (1) ,
g ($ay7_% ) - g (‘Tay77%0) =
L L R ) K (Km)
=g =) Y A t) T Amts) TV (@) V (y), (47
m=1

(K
where \,,, = w

(4.7) implies

, K=LILIILIV, m = 1,2,3..., x,y € Q, 3 > 3 > 0.

2
- () Y 9
}LIrlySp[g(xay7_% )_ g(x,y,—%o)] =

2 2y X (0 2y—1, 2y—1 2
= (g =27) ) Am +27) 7 (A +35) V(Y)I (4.8)

m=1
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(K)
Taking into account the equalities Sp G = Sp( G F) and (2.5), from (4.8)
we shall obtain

1 K K
— (300 — %)M + Sp { [(g)(y,.% —%2) ~ Sy, —3)|E} =

4
B
= (s — # Z Mo 527 O 5207 V). (4.9)
m=1
By Lemma 3.5, from (4.9) we have
> (K) (K) (K,m) M

A +22) A+ V ()P~ —, x—o00. (4.10)

A
m=1

By the technique (a Tauber type theorem) used in [17, 19, 21], we obtain

(K m) M 3
SV ~ gt oo (4.11)
o<t
By (4.11) we can write the following formula for asymptotic behavior of
eigen vector-functions of problem (K):

Km) M
™
(K)
W <t

Integrating equality (4.9) in the domain Q and applying the fact that the
(K,m)

vectors of the system { V' }3°_, are orthonormal, also recalling the results

of Lemma 3.5, we obtain

(K) (K)
Z (A + 52 A+ 522)]

m=1

— 1
f= 1 QT 0GR, (413)

1
) _
0< <2,

where || is the volume of .

Similarly, like in the classical theory of elasticity [17, 19] and the couple-
stress theory of elasticity [21], from (4.13) we obtain the formula for asymp-
totic distribution of eigenoscillation frequencies of problem (K):

(K) 1 3
N (t) ~ ) |QIME°, t — oo, (4.14)

N : : _— S
where N (t) = Z<K) 1 is the number of eigenoscillation frequencies w,,

not greater than ¢ (K I ILIILIV).
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Thus we have proved

Theorem 4.1. For all the internal boundary value problems of the shift
model of the linear theory of a mizture of two isotropic materials, the asymp-
totic behavior of eigenoscillation and eigenvector-function frequencies are
expressed by formulas (4.14) and (4.12), respectively.

Remark 4.1. By virtue of (4.14) the asymptotic distribution of eigenoscil-
lation frequencies does not depend on the form of an elastic mixture, but
depends on its volume. With Remark 1.2 taken into account, the number M
defined by (2.6) is the sum of the inverse cubes of velocities of plane waves,
propagating in a mixture of two isotropic elastic materials, for a = 0.

Remark 4.2. The Weyl formula for the asymptotic distribution of eigen-
oscillation frequencies in the classical theory of elasticity for a three-dimen-
sional isotropic body is written as [16]

1 3
N(t) ~ = QMo ¢ — o, (4.15)

where N (t) is the number of eigenoscillation frequencies not greater than ¢,
My = p?/2[(A+2p) =32 +2u73/?] = v73 + 205 . By Remark 1.2 the number
My is the sum of the inverse cubes of velocities of plane waves propagating in
an isotropic body. Formula (4.14) is a corollary of formula (4.14). Indeed,
if we consider an isotropic body as a mixture of two isotropic materials
of the same kind, then the elastic constants and densities will satisfy the
conditions
ag=as=pu, by =byo=A+pu, c=d=0,

4.16
p11 = p22 = p, p12 =0. (4.16)

By virtue of (1.9), (1.10), (4.16) we have ¢; = ¢c3 = v1, ¢3 = ¢4 = va,
M = 2M,. With conditions (4.16) taken into account, system (1.1) takes
the form

pAu + (A + p) grad divu’ + pw?u’ = 0, (4.17)
pAu” + (X 4 p) grad divu” + pw?u”" = 0, (4.18)
and the boundary condition in problem (I) becomes

W(2) =0, (4.19)
u'(2)=0, z€S. (4.20)

Obviously, problems (4.17)—(4.20) and (4.17), (4.19) have the same eigen-
oscillation frequencies, but the multiplicity of these frequencies will be two
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times higher for problem (4.17)—(4.20) than for problem (4.17), (4.19). Thus
we have

(0 11

1 ,
N(t) = = N(t) ~ 5 6% Q| Mt = s |QIMot3, t — oco.

1
2
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