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C(X) IN THE WEAK TOPOLOGY

N. V. VELIČKO

Abstract. Some relations between cardinal invariants of X and C(X)
are established in the weak topology, where C(X) is the space of con-
tinuous real-valued functions on X in the compact-open topology.

Let X be a compact space. Denote by C(X) the space of continuous real-
valued functions on X in the compact-open topology, by C ′(X) ≡ (C(X))′

the vector space dual to C(X), i.e. the space of continuous linear forms
on C(X), by Cω(X) (C ′ω(X)) the space C(X) (C ′(X)) in C ′(X)-topology
(C(X)-topology), and by Cp(X) the space C(X) in the topology of point-
wise convergence.

Symbols |X|, ω, χ, d, πω, πχ, pω, nω denote the cardinality, weight, char-
acter, density, π-weight, π-character, pseudo-weight, and network weight,
respectively (see, e.g., [1]).

In this paper we shall establish some relationship between cardinal in-
variants of X and Cω(X).

Proposition 1. ω(Cω(X)) ≤ expω(X).

Proof. Let ω(X) = τ . As is well known, ω(C(X)) = τ and |C(C(X))| ≤
exp τ . Since C ′(X) ⊆ Cp(C(X)), we have |C ′(X)| ≤ exp τ . Since Cω(X)
is a subspace of Cp(C ′(X)), it follows that ω(Cω(X)) ≤ ω(Cp(C ′(X))) ≤
|C ′(X)|. And finally, ω(Cω(X)) ≤ exp ω(X), which completes the proof.

To get further estimates we need the following general proposition (σ(·, ·)
stands below for weak topology [2]).

Proposition 2. Let E be a Banach space, Eω = (E, σ(E, E′)), and Sω

be the unit closed ball in Eω. Then d(E′) ≤ πχ(Sω) ≤ πχ(Eω) ≤ χ(E).
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Proof. Let π = {Vα : α ∈ A} be a π-base at the point 0 ∈ Sω. One may
assume that |A| = πχ(Sω) and Vα = Sω ∩ {x ∈ E : |fαi(x)| < εα, i ≤ n(α),
fαi ∈ E′}. Let Z ′ be the linear hull of the set {fαi : α ∈ A, i ≤ n(α)}. Prove
that Z’ is dense in E′. Assume the contrary: there exists a form f ∈ E′\[Z ′].
By the Hahn–Banach theorem there exists a linear form g ∈ E′′ such that
g(f) = 1 and g(Z ′) = 0. There is no loss of generality in assuming that
g ∈ S′′. Let V = {x ∈ E : f(x) < 2−1}. There exists α ∈ A such that
Sω ∩ V ⊆ Vα. The neighborhood

V (fαi, f, εα, 2−1, i ≤ n(α)) =
{

g′ ∈ E′′ : |g′(fαi)| < εα, |g′(f)− 1| < 2−1}

of the point g in σ(E′′, E′)-topology of the space E′′ contains some element
k(x), where x ∈ Sω and k : E → E′ is a canonical embedding (this follows
from Goldstine’s theorem [3]). But then x ∈ Vα\V , which contradicts the
choice of Vα. We have proved that [Z ′] = E′; it follows that α(E′) ≤ |Z ′| =
|A| ≤ πχ(Sω).

Corollary 1. For E = C(X) the following is valid:

|X| ≤ d(C ′(X)) ≤ πχ(Sω).

Indeed, the canonical mapping q : q(t)(x) = x(t) transfers the set X
onto a discrete subset of the space C ′(X) (since |q(t) − q(t′)| = 2 for any
points t, t′ from X). It follows that |X| ≤ d(C ′(X)), and we can apply
Proposition 2.

Question 1. Is it true that |X| = d(C ′(X))?

One more assertion. Let F ⊆ E′. Set EF = (E, σ(E, F )).

Proposition 3. χ(EF ) = ω(EF ).

Proof. Let {Vα : α ∈ A} be a fundamental family of σ(E,F )-neighborhoods
of zero in EF such that |A| ≤ χ(EF ). We can suppose that Vα = {x ∈
E : |fαi(x)| < εα, fαi ∈ F , i ≤ n(α)}. Fix some countable base π in R.
Put γ = {f−1

αi (V ) : α ∈ A, i ≤ n(α), V ∈ π}. Then |γ| = |A| and it
suffices to show that γ is a subbase for the topology σ(E, F ). Let x0 be an
arbitrary point of E and let V be a σ(E, F )-neighborhood of x0. The set
V −x0 is σ(E, F )-neighborhood of zero, so that there exists α ∈ A such that
Vα ⊆ V −x0. Choose the sets Wαi ∈ π such that fαi(x0) ∈ Wαi ⊆ (fαi(x0)−
εα, fαi(x0)+εα), i ≤ n(α). Set Γ = ∩{f−1

αi (Wαi) : i ≤ n(α)} and prove that
Γ ⊆ V . Let x ∈ Γ. Then fαi ∈ Wαi. Hence either |fαi(x) − fαi(x0)| < εα

or |fαi(x− x0)| < εα for i ≤ n(α), and x− x0 ∈ Vα ⊆ V − x0 or x ∈ V . We
have proved that γ is a subbase and so ω(EF ) ≤ |γ| = |A| ≤ χ(EF ).

Summing up the above arguments, we arrive at the following
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Theorem 1.

ω(X) = d(C(X)) ≤ πχ(Cω(X)) = πω(Cω(X)) =

= χ(Cω(X)) = ω(Com(X)) ≤ exp ω(X).

Proof. It is necessary here to employ Proposition 1, Corollary 1, Propo-
sition 3, and the well-known fact that πχ = χ and πω = ω for every
topological group.

Theorem 2.

|X| ≤ πχ(Sω) = πω(Sω) = χ(Sω) = ω(Sω) = d(C ′(X)) ≤ exp ω(X).

Proof. Since d(C ′(X)) ≤ ω(C ′(X)) and nω(Cp(C ′(X))) ≤ ω(C ′(X)), we
have nω(S′′ω) ≤ d(C ′(X)), where C ′′ω = ((C ′ω(X))′, σ(C ′′(X), C ′(X))) =
(C ′′(X), σ(C ′′(X), C ′(X))). As S′ω is compact, ω(S′′ω) = nω(S′′ω). Since Sω

is embedded topologically in S′′ω, ω(Sω) ≤ ω(S′′ω) = nω(S′′ω) ≤ d(C ′(X)).
By Corollary 1, πχ(Sω) ≥ d(C ′(X)), so that πχ(Sω) = πω(Sω) = χ(Sω) =
ω(Sω) = d(C ′(X)).

Question 2. Is it true that ω(Eω) ≥ ω(E)?

Question 3. Is it true that ω(E′) ≥ ω(E′
ω)?

Note that the weight of Cω(X) does not necessarily coincide with the
weight of Sω. Indeed, let X be a convergent sequence of real numbers.
Then C(X) is isomorphic to the space C of all convergent sequences of real
numbers. C ′ = `1 is separable, hence its unit closed ball is metrizable in
C(X)-topology, i.e., χ(Sω) = ω(Sω) = ω0. But Cω(X) is nonmetrizable, so
that χ(Cω(X)) > ω(Sω).

The problem of ψ-characters for Cp(X) was solved in [4]:

ψ(Cp(X)) ≤ d(X). (1)

Since Cω(X) maps onto Cp(X) one-to-one, from (1), it follows that

ψ(Cω(X)) ≤ d(X). (2)

Moreover, the following proposition is true.

Proposition 4. ψ(Cω(X)) = pω(Cω(X)) = d(C ′ω(X)).

Proof. Let {Vα : α ∈ A} be a subbase of Cω(X) in zero having the least
cardinality and consisting of standard sets Vα = {x ∈ C(X) : fαi(x) < εα,
i ≤ n(α)}. Let T be the C(X)-closure of the linear hull of the set {fαi : α ∈
A, i ≤ n(α)}. Prove that T = C ′(X). Suppose the contrary: there exists
a point g ∈ C ′(X)\T . By the theorem on separation of convex sets there
exists a C(X)-continuous linear form f such that f(T ) = 0 and f(y) > 0.
By virtue of the C(X)-continuity, f ∈ C(X). For all αi we have fαi(f) = 0.
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Hence f ∈ Vα for all α, but ∩{Vα : α ∈ A} = {0}. We have a contradiction.
Consequently, T = C ′(X) and ψ(Cω(X)) ≥ d(C ′ω).

Now let M = {gα : α ∈ A} be a C ′(X)-dense set of cardinality d(C ′(X)).
Then M is C(X)-separating family and the diagonal of mappings gα pro-
duces a condensation of Cω(X) in the product space

∏

{Rα : α ∈ A}. From
this it follows that pω(Cω(X)) ≤ ω(

∏

{Rα : α ∈ A}) = |A|.

Proposition 4 underlies the following assertion.

Theorem 3. If X is an Eberline compactum, then ψ(Cω(X)) = d(X).

Proof. Let Y ⊆ Cp(X) be an X-separating compactum. Then ω(Y ) =
d(Y ) = d(X) = ω(X). One may suppose that Y lies in Sω. By the
Grothendieck theorem [5], Y is compact in Cω(X). Then ω(γ) = pω(Y ) ≤
pω(Cω(X)) = ψ(Cω(X)) or d(X) ≤ ψ(Cω(X)). Reference to Proposition 4
completes the proof.

Proposition 5. The following statements are equivalent:
(1) Cω(X) is a k-space;
(2) Cω(X) is sequential;
(3) Cω(X) is a Frechet–Urysohn space;
(4) Cω(X) is metrizable;
(5) Cω(X) is finite.

Proof. It suffices to show that (1)⇒(5).
Suppose that X is infinite. Then dim C(X) = ∞ and there exists a set

A in C(X) such that 0 ∈ [A]ω, where [A]ω is the weak closure of A, but the
intersection of A with any bounded set is finite (see, e.g., [6]).

Let K be an arbitrary compact set in Cω(X). Then K is a Frechet–
Urysohn space. Hence, if x ∈ [K ∩ A]ω, there exists a sequence {xn} of
elements of A which converges to x. Any weak convergent sequence is always
bounded. For the definition of A it follows that the set ∪{xn : n ∈ ω} is
finite, i.e., the sequence {xn} is stationary: xn ≡ x beginning with some n.
Hence x ∈ A and K ∩ A is weakly closed. But this means that Cω(X) is
not a k-space.

The situation with Sω is somehow different. Here there are other criteria
for metrizability.

Proposition 6. Sω is metrizable iff X is countable.

Proof. If Sω is metrizable, then X is countable by Theorem 2. If Sω is
countable, then Cp(X) is metrizable. As X is compact, X is scattered. By
the theorem from [7], Sω is homeomorphic to Sp, hence Sω is metrizable.

Then the following proposition is valid.
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Proposition 7. If X is a scattered compactum, then Sω has the Frechet–
Urysohn (FU) property.

Proof. If X is scattered, then Cp(X) satisfies the FU-property. Sω is home-
omorphic to Sp, hence Sω has the FU-property.

Consequently, if X is an uncountable scattered compactum, then Sω is a
nonmetrizable Frechet–Urysohn space.

In conclusion we shall prove the formula

d(Cω(X)) = hd(Cω(X)) = nω(Cω(X)) = ω(X). (3)

Proof. Obviously, d(Z) ≤ hd(Z) ≤ nω(Z) for any Z. But d(Cp(X)) =
d(C(X)) = ω(X) [8], from which it follows that d(Cω(X)) = ω(X). But
nω(Cω(X)) = ω(X), which completes the proof.
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