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A DIAZ-METCALF TYPE INEQUALITY FOR POSITIVE LINEAR
MAPS AND ITS APPLICATIONS*

MOHAMMAD SAL MOSLEHIANT, RITSUO NAKAMOTO*, AND YUKI SEO$

Abstract. We present a Diaz—Metcalf type operator inequality as a reverse Cauchy—Schwarz
inequality and then apply it to get some operator versions of Pélya—Szegd’s, Greub—Rheinboldt’s,
Kantorovich’s, Shisha—Mond’s, Schweitzer’s, Cassels’ and Klamkin—McLenaghan’s inequalities via
a unified approach. We also give some operator Griiss type inequalities and an operator Ozeki—
Izumino—Mori—Seo type inequality. Several applications are included as well.
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1. Introduction. The Cauchy—Schwarz inequality plays an essential role in
mathematical analysis and its applications. In a semi-inner product space (S, (-,))
the Cauchy—Schwarz inequality reads as follows

(z,y)] < (z,2) 2y, ) (2,y € ).

There are interesting generalizations of the Cauchy—Schwarz inequality in various
frameworks, e.g., finite sums, integrals, isotone functionals, inner product spaces, C*-
algebras and Hilbert C*-modules; see [5, 6, 7, 9, 11, 13, 17, 20] and references therein.
There are several reverses of the Cauchy—Schwarz inequality in the literature: Diaz—
Metcalf’s, Pélya—Szeg6’s, Greub—Rheinboldt’s, Kantorovich’s, Shisha—Mond’s, Ozeki—
Izumino—Mori—Seo’s, Schweitzer’s, Cassels’ and Klamkin—-McLenaghan’s inequalities.

Inspired by the work of J.B. Diaz and F.T. Metcalf [4], we present several reverse
Cauchy—Schwarz type inequalities for positive linear maps. We give a unified treat-
ment of some reverse inequalities of the classical Cauchy—Schwarz type for positive
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linear maps.

Throughout the paper B(J#) stands for the algebra of all bounded linear operators
acting on a Hilbert space . We simply denote by «a the scalar multiple ol of the
identity operator I € B(s¢). For self-adjoint operators A, B the partially ordered
relation B < A means that (B¢, &) < (A€, &) for all £ € 7. In particular, if 0 < A,
then A is called positive. If A is a positive invertible operator, then we write 0 < A. A
linear map ® : &/ — % between C*-algebras is said to be positive if ®(A) is positive
whenever A is. We say that ® is unital if ® preserves the identity. The reader is
referred to [9, 19] for undefined notations and terminologies.

2. Operator Diaz—Metcalf type inequality. We start this section with our
main result. Recall that the geometric operator mean A f B for positive operators
A, B € B(J) is defined by

N
NG

At B=A? (A—%BA—%) A
if 0 < A.

THEOREM 2.1. Let A,B € B(J) be positive invertible operators and @ :
B(2) — B(£) be a positive linear map.

(i) If m®>A < B < MZ?A for some positive real numbers m < M, then the
following inequalities hold:

e Operator Diaz—Metcalf inequality of first type
Mm®(A)+ ®(B) < (M + m)P(AtB);

e Operator Cassels inequality

M+m
®(A)t2(B) < NaTr

e Operator Klamkin—McLenaghan inequality

P(AEB);

O(A1B)7 B(B)D(ALB) 7 — ®(A$B)3 B(A) ' B(A4B)* < (VM — Vim)’;
e Operator Kantorovich inequality

<7M2—|—m2.

B(A)B(AT) < —

(ii) If m} < A < M} and m3 < B < M3 for some positive real numbers
m1 < My and my < Ms, then the following inequalities hold:
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Operator Diaz—Metcalf inequality of second type

M2m2
M1m1

B(A) + B(B) < (ff n A”}) B(ALB):

Operator Polya—Szego inequality

1 M1M2 mimeso .
DA)P(B) < ; <\/ e ,/M1M2> (A1B):

Operator Shisha—Mond inequality

D(A4B) 2 &(B)D(AIB) T — O(AIB)2®(A) ' B(ALB)?
< (V%ﬁ - 1/?2) ;

\/MlMg (\/Mle — ,/m1m2)2 . M1 M2
O(A)fP(B) — P(ALB) < SN min {, } .

Proof. (i) If m*A < B < M?A for some positive real numbers m < M, then
m? < A% BA7 < M2

Operator Griiss type inequality

myp me

(i) If m? < A < M and m3 < B < M2 for some positive real numbers
my < M7 and mo < Ms, then

2 V2
2 _ Mo A3t 2 2
=<2 <AZTBA? < <= =M". 2.1
m M? — - m? (2.1)

In any case we then have

(M _ (ATIBA71>1/2) ((ATIBA71>1/2 —m) >0,

whence

1

Mm+ A= BA= < (M +m) (A%IBA%I)E ,
Hence
MmA+ B < (M +m)A/? (A%IBA%I)g AV2 = (M +m)AiB.  (22)

Since ® is a positive linear map, (2.2) yields the operator Diaz—Metcalf inequality of
first type as follows:

Mm®(A) + ®(B) < (M +m)®(ALB). (2.3)
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In the case when (ii) holds we get the following, which is called the operator Diaz—
Metcalf inequality of second type:
M,
PA)+O(B) < | —+— ) ®(AEB
() +0(B) < (32 + 172 ) o(asB).

1

Mgmg
M1m1

Following the strategy of [21], we apply the operator geometric-arithmetic inequality
to Mm®(A) and ®(B) to get:

VMm(®(A)P(B)) = (Mm®(A))id(B) < % (Mm®(A) + ®(B)). (2.4)
It follows from (2.3) and (2.4) that

M+m
P(A)tP(B) < NI

which is said to be the operator Cassels inequality under the assumption (i); see also
[16]. Under the case (ii) we can represent it as the following inequality being called
the operator Polya—Szego inequality or the operator Greub—Rheinboldt inequality:

B(A)D(B) < % (,/Zﬁj + /Eﬁi) O(ALB). (2.5)

It follows from (2.5) that

B(A)0(B) — B(AB) < ((F N )—1) (A1)

(ALB),

_ (VLN — i) B(ALB). (2.6)
2\/m1m2\/M1M2
It follows from (2.1) that
T2 A< A2 (A%IBA%I)l/Z Az < M2y
1 mi
SO
m2m2 M2M2
L= < AfB< ——=. (2.7)
1 my

Now, (2.6) and (2.7) yield that
v —vm ) M? M2
2,/ \/ mi

An easy symmetric argument then follows that

2
VMM, (VM M; — \/mims) min M, M,
2\/mimy my’ ma J

o(A)20(B) — p(4:B) < VM

(A)10(B) — ©(AfB) <
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presenting a Griiss type inequality.

If A is invertible and ® is unital and m% =m?2 < A< M?= M12, then by
putting m% = 1/M? < B= A~! <1/m? = M3 in (2.5) we get the following operator
Kantorovich inequality:

M? +m?
P(APP(A™) < ————r.
(Apa(a~) < Ho T
It follows from (2.3) that

D(AB) T ©(B)® (AtiB) — B(AfB)} 0(A) 0 (AgB)*
< M +m— Mm®(A$B) = &(A)D(AB) 2 — D(AIB)2B(A) "' ®(A4B)?

< M 4 = 2/Mim — (ViEm (q)(AﬁB)qu)(A)(I)(AﬁB)%l)l/Q

- (@(AﬂB)%Q(A)—%(AﬁB)%)” )
< (\/M - \/TTL)2 ) (28)

that is, an operator Klakmin—Mclenaghan inequality when (i) holds. Under (ii), we
get the following operator Shisha—Szego inequality from (2.8):

O(AEB)= ®(B)B(AtB)T — (AfB)¥0(A) 7 (A4B)? < («/ — /22 )

3. Applications. If (a,...,a,) and (by,...,b,) are n-tuples of real numbers
with 0 < m; <a; <My (1 <i<n),0<me <b <M;(1<i<n), wecan
consider the positive linear map ®(7T) = (Tx,z) on B(C") = M, (C) and let A =
diag(a?,...,a2), B = diag(b?,...,b2) and x = (1,...,1)! in the operator inequalities
above to get the following classical inequalities:

vl |
—

o Diaz—Metcalf inequality [4]

- Mo Ms o My m2\ o
b? a2<<+> aiby .
2 2= G ) 2

e Pdlya—Szego inequality [23]

(Zkai azk];k : (F F)

e Shisha-Mond inequality [24]

2
> et G _ 1 @Dr < [My [y
Dkt arbr S bf T ma M,
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e A Griiss type inequality

n 1/2 n 1/2 n
(Z ai) <Z bi) — Z akbk
k=1 k=1 k=1
_ VAL (VAT — ) o a0}

- 2./ mims mi ’ mao
Using the same argument with a positive n-tuple (aq,...,a,) of real numbers with
O<m<a;<M(1<i<n),z= %(1, ..., )t we get from Kantorovich inequality
that

e Schweitzer inequality [2]

Igm o) (1= o) _ (M24+m?)?
— ‘ — o < —
(n;al> (n;a’z —  4AM?*m?

If (a1,...,a,) and (by,...,b,) are n-tuples of real numbers with 0 < m < a;/b; <
M (1 <i<mn), we can consider the positive linear map ®(T') = (T'z,z) on B(C") =
M, (C) and let A = diag(a?,...,a2), B = diag(b?,...,b2) and = = (Jwr,. .., Jw,)"

based on the weight w = (wy, ..., w,), in the operator inequalities above to get the
following classical inequalities:

e Cassels inequality [25]

Zzzl wka% ZZ:1 wkbi < (M + m)2 )
(ZZ:1 wkakbk)Q - 4dmM

e Klamkin-McLenaghan inequality [14]

2
n n n 2 n n
Z wyai Z wybi — (Z wkakbk> < (\/M — \/ﬁ) Z wparby Z wras.
k=1 k=1 k=1 k=1 k=1
Using the same argument, we obtain a weighted form of the Pélya—Szegd inequal-
ity as follows:
e Grueb-Rheinboldt inequality [10]

Z:l wkai ZZ:;[ wkbz > (M1 Ms + m1m2)2
Oy wkakbk)2 — dmyma M Mo

One can assert the integral versions of discrete results above by considering
L?(X, i), where (X, u) is a probability space, as a Hilbert space via (hy, hs) =
[ h1hodp, multiplication operators A, B € B(L*(X,u))) defined by A(h) = f?h
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and B(h) = th for bounded f,g € L?*(X,u) and a positive linear map ® by
= [ T(1)dp on B(L*(X, p))). For instance, let us state integral versions of the
Cabselb and Klamkin—McLenaghan inequalities. These two inequalities are obtained,
first for bounded positive functions f,g € L?(X,p) and next for general positive
functions f,g € L?(X, 1) as the limits of sequences of bounded positive functions.

COROLLARY 3.1. Let (X, u) be a probability space and f,g € L?(X,u) with
0<mg< f< Mg for some scalars 0 < m < M. Then

IR NE (L m) ( /. fgdu)2
/Xdeu/XQQdu— (/X fgdu)2 < (\/ﬁ— \/E)Q/ngdu/x F2du.

Considering the positive linear functional ®(R) = > | (R¢;, &;) on B(J), where
&,...,&, € A, we get the following versions of the Diaz—Metcalf and Pélya—Szegd
inequalities in a Hilbert space.

and

COROLLARY 3.2. Let J be a Hilbert space, let &1,...,&, € JC and let T, S €
B(S7) be positive operators satisfying 0 < my < T < My and 0 < mg < S < Ms.
Then

M n
Marmz Z ITe? + Z IS < ( %) S (T2887) 2, P
1=1

and

. 12, 1/2
(Z ||T§i|2> (Z ||S§z‘||2>
=1 =1

1 My Mo mims = 24 @2\1/2¢ (12
< =14/ 1/ E T il -
— 2 < 1 9 + M1M2> pt ||( ﬁS ) 61”

4. A Griiss type inequality. In this section we obtain another Griiss type
inequality, see also [18]. Let &/ be a C*-algebra and let % be a C*-subalgebra of
/. Following [1], a positive linear map ® : & — A is called a left multiplier if
O(XY)=P(X)Y forevery X € &7/, Y € A.

The following lemma is interesting on its own right.
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LEMMA 4.1. Let ® be a unital positive linear map on </, A € o/ and M,m be
complex numbers such that

Re((M — A)*(A—m)) >0. (4.1)
Then

D(1AP) — |2(A) < 1M —m]?.

Proof. For any complex number ¢ € C, we have
D(|AP) — [@(A)? = B(|A — c[*) — |2(A ~ o)”. (4.2)

Since for any T € &/ the operator equality

2
— Re (M - T)(T - m)")

1

2

holds, the condition (4.1) implies that

M 2
@(‘A— ;Lm

> < 3|M _mf?. (4.3)

Therefore, it follows from (4.2) and (4.3) that

B(AP) - [B(A) <

REMARK 4.2. If (i) ® is a unital positive linear map and A is a normal operator
or (ii) @ is a 2-positive linear map and A is an arbitrary operator, then it follows from
[3] that

0 < (|A]%) — |B(4)" . (4.4)

Condition (4.4) is stronger than positivity and weaker than 2-positivity; see [8]. An-
other class of positive linear maps satisfying (4.4) are left multipliers, cf. [1, Corollary
2.4].

LEMMA 4.3. Let a positive linear map ® : of — B be a unital left multiplier.
Then

[B(A"B) — ®(A)B(B)[ < |®(A]2) — [9(A)2]| (@(B]?) - [9(B)P)  (45)
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Proof. If we put [X,Y] := &(X*Y) — &(X)*®(Y), then & is a right pre-inner
product C*-module over &, since ®(X*Y) is a right pre-inner product Z-module, see
[1, Corollary 2.4]. It follows from the Cauchy—Schwarz inequality in pre-inner product
C*-modules (see [15, Proposition 1.1]) that

|(A"B) — ®(4)"®(B)|* = [B, 4] (4, B]
< [|[A; AJ||[B, B]
= [|®(A7A) — 2(A)"0(A)|[ (2(B*B) — ®(B)"®(B))
and hence (4.5) holds. O

THEOREM 4.4. Let a positive linear map ® : o7 — B be a unital left multiplier.
If My,mq, Mo, my € C and A, B € o/ satisfy the following conditions:

Re(M; — A)*(A—m1) >0 and Re(My— B)*(B—mg) >0,
then

1
|®(A*B) — ®(A)*"®(B)| < ZIMl —mq| |Ma — ma].

Proof. By Lowner—Heinz theorem, we have
|®(A"B) — ‘P(A)*‘I)(B)I
1
|[@(|A)) — [@(A)]? H (®(|B|*) — |®(B)[*)* (by Lemma 4.3)

IN

IN

1
ZlMl —my| |Ma — ma] (by Lemma 4.1). O

5. Ozeki—Izumino—Mori—Seo type inequality. Let a = (a1,...,a,) and b =
(b1,...,byn) be n-tuples of real numbers satisfying

Ogmlgaing and OSmQSblgMg (izl,...,n).

Then Ozeki-Izumino-Mori-Seo inequality [12, 22] asserts that
> a?d b - Zaz | < S (MM — myms)?. (5.1)
i=1 =1

In [12] they also showed the following operator version of (5.1): If A and B are
positive operators in B(4#) such that 0 < mqy < A < M; and 0 < mg < B < M, for
some scalars my < M7 and mo < Ms, then

1
(A%z, x)(B*z, ) — (A% § B%z,2)* < yoe (My My — mims)® (5.2)
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for every unit vector x € H, where v = max{%, ”A}—i .

Based on the Kantorovich inequality for the difference, we present an extension
of Ozeki-Izumino-Mori-Seo inequality (5.2) as follows.

THEOREM 5.1. Suppose that ® : B() — B(#) is a positive linear map such
that ®(I) is invertible and ®(I) < I. Assume that A, B € B(J) are positive invertible
operators such that 0 < m; < A < My and 0 < my < B < My for some scalars
mi1 < M7 and mo < Ms. Then

M1M2 - m1m2)2 % M22
4 m3

(5.3)

B(BY) 0 (A%)0(B)} — [B(B*) 0 (A%BY) (B P < |

and
(M1M2 - mlmz)2 % %12
4 m2’
(5.4)

D(A%)TR(B?)D(A?)E — |B(A?) "2 B(AB)D(A?)3|? <

Proof. Define a normalized positive linear map ¥ by
U(X) = D(A) 2H(A7 XA7)D(A) 2.
By using the Kantorovich inequality for the difference, it follows that

(M —m)?

- (5.5)

T(X?) - ¥(X)?2 <
for all 0 < m < X < M with some scalars m < M. As a matter of fact, we have

U(X?) - U(X)? <U(M+m)X — Mm) — ¥(X)?

— (\I/(X)— M;m)2+ (M;m)Q

If we put X = (A=2BA~2)z then due to

0<(m—)\/$>?§X§\/i\n47f(_M)

we deduce from (5.5) that

2 < (\/MlM — ,/mlmg)Q
- 4M1m1 '

(A) 2 0(B)D(A)”

N
|
/N
=
&

|

N
iy
N
T
X
by
I

N

N——
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Pre- and post-multiplying both sides by ®(A), we obtain

(VM My — /myims)
4M1m1
\/MlM — ,/m1m2)2 < %

4 mi

(A B(B)B(A)E — [B(A)~F0(A8B)B(A)}? < “a(a)?

<!

)

since 0 < ®(A)? < MZ. Replacing A and B by A% and B? respectively, we have the
desired inequality (5.4). Similarly, one can obtain (5.3). O

REMARK 5.2. If ® is a vector state in (5.3) and (5.4), then we get Ozeki-Izumino—
Mori-Seo inequality (5.2).
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