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1. Introduction. Let ϕ : V ×V → F be a bilinear form on a finite dimensional
vector space V over a field F . We refer to the pair (V, ϕ) as a bilinear space. The
goal of this paper is to describe the structure of the group G = G(V ) of all linear
automorphisms of V preserving ϕ.

Classical groups such as the general linear, symplectic and orthogonal groups
arise in this fashion. These classical cases have been thoroughly investigated (see [2],
[8]). Arbitrary non-degenerate forms possess an asymmetry (as defined in [7]), which
exerts a considerable influence on the structure of the bilinear space and associated
group. This has recently been exploited by J. Fulman and R. Guralnick [4], where
an array of useful information about G is presented. The study of G for a general
bilinear form, possibly degenerate, over an arbitrary field does not seem to have been
hitherto considered. The presence of a degenerate part enriches the structure of G,
and it is in this regard that our main contribution takes place.

In general terms our approach consists of extracting structural information about
G by examining how G acts on V and its various FG-submodules.

Knowledge of the structure of V as an FG-module will therefore be necessary.
Our references in this regard will consist of the paper [7] by C. Riehm, its appendix
[5] by P. Gabriel, and our recent article [3] with D. Djokovic.

An important decomposition of V to be considered is

V = Vodd ⊥ Veven ⊥ Vndeg,

where Vodd, respectively Veven, is the orthogonal direct sum of indecomposable degen-
erate bilinear spaces of odd, respectively even, dimension, and Vndeg is non-degenerate.
We identify G(Vodd), G(Veven) and G(Vndeg) with subgroups of G(V ) by means of this
decomposition.

As noted in [3], while Vodd, Veven and Vndeg are uniquely determined by V up
to equivalence of bilinear spaces, they are not unique as subspaces of V , and in
particular they are not G-invariant. Thus, one attempt to understand G would consist
of studying the structure of G(Vodd), G(Veven) and G(Vndeg) separately, and then see
how these groups fit together to form G.
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This approach turns out to be fruitful, as we proceed to describe, with the notable
exception of the structure of G(Vndeg) in the special case when the asymmetry of Vndeg

is unipotent and the underlying field F has characteristic 2. This is what C. Riehm
refers to as Case IIb in his paper.

We begin our journey in section 2 by establishing notation and terminology. Two
important G-invariant subspaces of V described here are what we denote by V∞ and
∞V in [3]. Briefly, any choice for Vodd will contain V∞, which is in fact the only totally
isotropic subspace of Vodd of maximum possible dimension; whatever the choices for
Veven and Vndeg, it turns out that ∞V = V∞ ⊥ Veven ⊥ Vndeg.

Section 3 contains basic tools regarding V and G to be used throughout the paper.
An important feature of this section is the introduction -in Definition 3.17- of a family
of 1-parameter subgroups of G(Vodd) which will play a decisive role in shedding light
on the structure of both G(Vodd) and G.

The actual paper can be said to begin in section 4. We first introduce a normal
subgroup N of G, defined as the intersection of various pointwise stabilizers in G
when it acts on certain sections of the FG-module V . It is shown in Theorem 4.4
that G = N � E, where E ∼= Π

1≤i≤t
GLmi(F ) and the parameters t and m1, ...,mt

depend only on V , as explained below. We have

Vodd = V1 ⊥ V2 ⊥ · · · ⊥ Vt,

where each Vi is the orthogonal direct sum of mi bilinear subspaces, each of which
is isomorphic to a Gabriel block of size 2si + 1, with s1 > s2 > · · · > st. Here by
a Gabriel block of size r ≥ 1 we mean the only indecomposable degenerate bilinear
space of dimension r, up to equivalence, namely one that admits a nilpotent Jordan
block of size r as its Gram matrix.

As a byproduct of the results in this section we are able to describe the irreducible
constituents of the FG-submodule V∞ of V . This is taken up in section 5 (Theorem
5.1). These constituents are seen later in section 6 to be intimately connected to
certain FG-modules arising as sections of G itself. The end of this section also gives
a second decomposition for G, namely

G(V ) = G[∞V/V∞] � (G(Veven) ×G(Vndeg)),

where in general G[Y ] denotes the pointwise stabilizer of G acting on a G-set Y .
Section 6 goes much deeper than previous sections. In view of the decomposition

G = N � E and the clear structure of E, our next goal is to study N and the action
of G upon it. In Theorem 6.10 we prove N = G[V∞] � U , where U is a unipotent
subgroup of G(Vodd) generated by the 1-parameter subgroups referred to above. An
extensive analysis of the nilpotent group N/G[V∞] is carried out. First of all, its
nilpotency class is seen in Theorem 6.2 to be t− 1. As a nilpotent group N/G[V∞],
possesses a descending central series. We actually produce in Theorem 6.22 a G-
invariant descending central series for N/G[V∞] each of whose factors has a natural
structure of FG-module, and irreducible at that. These irreducible FG-modules are
in close relationship with the irreducible constituents of the FG-module V∞. By
taking into account all factors in our series we deduce a formula for the dimension
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of U , in the algebraic/geometric sense, which turns out to be equal to the number of
1-parameter groups generating U and referred to above. Theorem 6.20 proves

dimU =
∑

1≤i<j≤t
(si − sj + 1)mimj .

As a byproduct of the results in this section we also obtain in Theorem 6.15 the
irreducible constituents of the FG-module V/∞V , which in turn are closely related
to other FG-modules also arising as sections of G.

Section 7 concentrates on the next logical target, namely G[V∞]. We know from
above that G = N � E and N = G[V∞] � U . Here we prove (Theorem 7.1) that U
actually normalizes E -so G = G[V∞]�(U�E)-, that G[V∞] admits the decomposition
G[V∞] = (G[V∞] ∩ G[∞V/V∞]) � (G(Veven) × G(Vndeg)), and that U � E actually
commutes with G(Veven) × G(Vndeg) elementwise. We thus obtain the important
decomposition

G = (G[V∞] ∩G[∞V/V∞]) � (G(Veven) ×G(Vndeg) × (U � E)) .

With the structure of U � E already clarified, the next step consists of study-
ing G(Veven) and G(Vndeg) on their own, and see what is the structure of G[V∞] ∩
G[∞V/V∞].

Note that G(Vodd) seems to be absent above. But that is only an illusion, which
is clarified in section 11. In fact, G(Vodd) is essentially what is holding the above
decomposition together. If Vodd = (0) the Veven and Vndeg are in fact G-invariant, as
[3] shows, so G = G(Veven) ×G(Vndeg).

Section 8 begins by laying the foundations (Theorem 8.3) for a combined attack
on G(Veven) and certain direct factors of G(Vndeg). Theorem 8.5 then exploits this by
describing G(Veven) as the centralizer of a nilpotent element of known similarity type
in the general linear group.

Attention in section 9 is focused on G(Vndeg). This group is approached via the
study of Vndeg as a module over the polynomial algebra F [t] by means of the asymme-
try of ϕ|Vndeg , as outlined in [7]. Thus (see equation (9.1)) G(Vndeg) is isomorphic to
the direct product of groups of the form G(W ), where W is a non-degenerate bilinear
space whose type, according to C. Riehm, is either I, IIa or IIb.

In the first case G(W ) is seen (in Theorem 9.1 via Theorem 8.3) to be isomor-
phic to the centralizer in a general linear group of a linear automorphism of known
similarity type. If F is algebraically closed this linear automorphism can be replaced
by a nilpotent endomorphism.

Case IIa is more difficult. We find (Theorem 9.6) G(W ) to be equal to the cen-
tralizer in a symplectic or orthogonal group of a particular linear endomorphism. If F
has characteristic not 2 this element is in the corresponding symplectic or orthogonal
Lie algebra. If in addition F is algebraically closed we can ensure (Theorems 9.8 and
9.9) that this element is nilpotent of known similarity class. These centralizers are
described in various places, e.g. in [6, 10].

As mentioned already above the case when the asymmetry of Vndeg is unipotent
and F has characteristic 2, i.e. Case IIb, remains unsolved.
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Section 10 concentrates on G[V∞] ∩G[∞V/V∞]. One sees rather rapidly (Lemmas
10.1, 10.2 and 10.4) that G[V∞] ∩G[∞V/V∞] is unipotent of nilpotency of class ≤ 2
having G[∞V ] in its center, the corresponding quotient group being abelian. Thus
the study of G[V∞] ∩G[∞V/V∞] is divided into that of G[V∞] ∩G[∞V/V∞]/G[∞V ]
and G[∞V ].

Well, G[∞V ] is naturally an FG-module and, much as in section 6, we find
(Theorem 10.18) its irreducible constituents and explain how they relate to those of
V/∞V . As in section 6, this requires considerable amount of work. In particular, the
dimension of G[∞V ] is found. We also compute (Proposition 10.20) the dimension of
the quotient group G[V∞] ∩G[∞V/V∞]/G[∞V ], thereby obtaining (Theorem 10.21)
a formula for the dimension of G[V∞] ∩G[∞V/V∞], which reads

dimG[V∞] ∩G[∞V/V∞] = dim (V/V∞) × (m1 + · · · + mt).

Section 11 furnishes a few more decompositions for G and G(Vodd) (Theorems
11.1 and 11.2) and includes an example (Theorem 11.3) on the structure of G(Vodd)
in a special but interesting case. The structure of G(Vodd) is fully revealed in this
case.

Our last section makes some comments on an alternative approach to the study
of G.

A few words about the origin of this paper are in order. After our joint work
[3] with D. Djokovic, we were excited about the prospect of being able to attack the
present problem. We worked rather intensively together for quite some time in fruitful
collaboration. Each of us built his own version of the paper, and at one point our
methods and some of our goals became too far apart for us to be able to amalgamate
them into a single paper. Even though we agreed to submit our versions separately,
the outcome of this project should be regarded as joint work.

2. Generalities. Let F be a field. A bilinear space over F is a pair (V, ϕ),
where V is a finite dimensional F -vector space and ϕ : V ×V → F is a bilinear form.
An isometry from a bilinear space (V1, ϕ1) to a bilinear space (V2, ϕ2) is a linear
isomorphism g : V1 → V2 satisfying

ϕ2(gv, gw) = ϕ1(v, w), v, w ∈ V1.

Two bilinear spaces are equivalent if there exists an isometry between them. The
isometry group of a bilinear space (V, ϕ) is the group of all isometries from (V, ϕ) into
itself.

We henceforth fix a bilinear space (V, ϕ). Its isometry group will be denoted by
G(V, ϕ), G(V ), G(ϕ), or simply by G. Explicit reference to ϕ will be omitted when
no confusion is possible. We shall often write 〈v, w〉 instead of ϕ(v, w).

The space of all bilinear forms on V will be denoted by Bil(V ). There is an action
of GL(V ) on Bil(V ) given by

(g · φ)(v, w) = φ(g−1v, g−1w), g ∈ GL(V ), φ ∈ Bil(V ), v, w ∈ V.

Thus the isometry group of (V, ϕ) is the stabilizer of ϕ under this action.
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If U is a subspace of V , then U becomes a bilinear space by restricting ϕ to U×U .
We write V = U ⊥ W if V = U ⊕W and 〈U,W 〉 = 〈W,U〉 = 0. In this case we refer
to U and W as orthogonal summands of V . A bilinear space is indecomposable if it
lacks proper non-zero orthogonal summands. If 〈U,U〉 = 0 then U is totally isotropic.

For a subspace U of V , let

L(U) = {v ∈ V | 〈v, U〉 = 0}, R(U) = {v ∈ V | 〈U, v〉 = 0}.

Here L(V ) and R(V ) are the left and right radicals of V , and Rad(V ) = L(V )∩R(V ) is
the radical of V . We have dimL(V ) = dimR(V ), and we say that V is non-degenerate
whenever this number is 0. Otherwise V is degenerate. A degenerate space is totally
degenerate if all its non-zero orthogonal summands are degenerate.

We view L and R as operators which assign to each subspace of V its left and
right orthogonal complements, respectively. If required we will write LV and RV for
them. We may compound these operators, denoting by Li and Ri their respective
i-th iterates. By convention, L0 and R0 are the identity operators. By definition

L(V ) ⊆ L3(V ) ⊆ L5(V ) ⊆ · · · ⊆ L4(V ) ⊆ L2(V ) ⊆ L0(V ) = V,

and similarly for R. We denote by L∞(V ), R∞(V ), L∞(V ) and R∞(V ) the sub-
spaces of V at which the sequences (L2k+1(V ))k≥0, (R2k+1(V ))k≥0, (L2k(V ))k≥0

and (R2k(V ))k≥0 stabilize, respectively. We set V∞ = L∞(V ) + R∞(V ) and ∞V =
L∞(V ) + R∞(V ). By construction both V∞ and ∞V are G-invariant.

For r ≥ 1 and λ ∈ F , denote by Jr(λ) the lower Jordan block of size r corre-
sponding to the eigenvalue λ. Thus

J1(λ) = (λ), J2(λ) =
(
λ 0
1 λ

)
, J3(λ) =


λ 0 0

1 λ 0
0 1 λ


 , ...

Write Nr for a bilinear space whose underlying form has matrix Jr(0) relative to some
basis. We shall refer to the bilinear space Nr as a Gabriel block and to r as its size.
We refer the reader to [3, 12] for the following formulation of a theorem due to P.
Gabriel [5].

Theorem 2.1. Let (V, ϕ) be a bilinear space over F . Then
(a) V = Vtdeg ⊥ Vndeg, where Vtdeg is the orthogonal direct sum of Gabriel blocks

and Vndeg is non-degenerate (either of them possibly 0).
(b) The sizes and multiplicities of the Gabriel blocks which appear in Vtdeg are

uniquely determined by V .
(c) The equivalence class of Vndeg is uniquely determined by V .
(d) Up to equivalence, the only indecomposable and degenerate bilinear space of

dimension r ≥ 1 is Nr.
We refer to Vtdeg and Vndeg as the totally degenerate and non-degenerate parts of

V , respectively. We may write Vtdeg = Veven ⊥ Vodd, where Veven resp. Vodd is the
orthogonal direct sum of Gabriel blocks of even resp. odd size. We refer to them as
the even and odd parts of V .
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We fix a decomposition

V = Vodd ⊥ Veven ⊥ Vndeg, (2.1)

and identify G(Vodd), G(Veven) and G(Vndeg) with their image in G(V ), obtained by
extending via the identity on the complements exhibited in (2.1).

While none of Veven, Vodd, Vndeg are in general G-invariant (see [3]) we know from
[3] that, whatever the choices for these are, V∞ is the only totally isotropic subspace
of Vodd of maximum dimension and

∞V = V∞ ⊥ Veven ⊥ Vndeg. (2.2)

Notation 2.2. If G acts on a set X and Y ⊆ X then G[Y ] and G{Y } denote
the pointwise and global stabilizers of Y in G, respectively.

Notation 2.3. If Y is a subset of G then < Y > denotes the subgroup of G
generated by Y .

Notation 2.4. If W is an F -vector space and f1, ..., fm are vectors in W then
their span will be denoted by (f1, ..., fm).

Notation 2.5. The transpose of φ ∈ Bil(V ) is the bilinear form φ′ ∈ Bil(V ),
defined by

φ′(v, w) = φ(w, v), v, w ∈ V.

The transpose of a matrix A will be denoted by A′.

3. Lemmata. We fix a decomposition

Vodd = V1 ⊥ V2 ⊥ · · · ⊥ Vt, (3.1)

where each Vi is the orthogonal direct sum of mi bilinear subspaces, each of which is
isomorphic to a Gabriel block of size 2si + 1, with s1 > s2 > · · · > st. By means of
the decomposition (3.1) we may identify each G(Vi) with its image in G(Vodd).

We have

Vi = V i,1 ⊥ V i,2 ⊥ · · · ⊥ V i,mi , (3.2)

where each V i,p, 1 ≤ p ≤ mi, has a basis

ei,p1 , ..., ei,p2si+1

relative to which the matrix of ϕ is equal to J2si+1(0). We shall consider the basis B
of Vodd, defined by

B = {ei,pk | 1 ≤ i ≤ t, 1 ≤ p ≤ mi, 1 ≤ k ≤ 2si + 1}. (3.3)

For 1 ≤ i ≤ t let V †
i be the span of ei,p2k , 1 ≤ p ≤ mi and 1 ≤ k ≤ si, and let

V †
odd = ⊕

1≤i≤t
V †
i .
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Note that V †
odd is a totally isotropic subspace of Vodd satisfying

Vodd = V∞ ⊕ V †
odd. (3.4)

There is no loss of generality in considering this particular subspace, as shown in
Lemma 3.3 below.

Lemma 3.1. G[V∞] ⊆ G[V/∞V ].
Proof. Let g ∈ G[V∞], x ∈ V and y ∈ V∞. Then

〈x − gx, y〉 = 〈x, y〉 − 〈gx, y〉 = 〈x, y〉 − 〈x, g−1y〉 = 〈x, y〉 − 〈x, y〉 = 0.

Since L(V∞) = ∞V , the result follows.
Lemma 3.2. G[∞V ] = G(Vodd) ∩G[V∞] ⊆ G[V/V∞].
Proof. Since

L(Veven ⊕ Vndeg) ∩R(Veven ⊕ Vndeg) = Vodd,

we have G[∞V ] ⊆ G(Vodd). For g ∈ G[∞V ] and v ∈ Vodd, by Lemma 3.1 we have

gv − v ∈ ∞V ∩ Vodd = V∞.

Hence G[∞V ] ⊆ G[V/V∞].
Lemma 3.3. The permutation action of G(Vodd) on the set of totally isotropic

subspaces W of Vodd satisfying Vodd = V∞ ⊕ W is transitive. In fact, restriction to
G[∞V ] yields a regular action.

Proof. Let W and W ′ be totally isotropic subspaces of Vodd complementing V∞.
By Lemma 3.1 we have

G[∞V ] ∩G{W} = G[∞V ] ∩G[V/∞V ] ∩G{W} =< 1 > .

We next show the existence of g ∈ G[∞V ] satisfying g(W ) = W ′. The decomposition
Vodd = V∞⊕W ′ gives rise to a unique projection p ∈ EndF (Vodd) with image W ′ and
kernel V∞. Define g ∈ GL(Vodd) by

g(v + w) = v + p(w), v ∈ V∞, w ∈ W.

Let u, v ∈ V∞ and w, z ∈ W . Since V∞, W and W ′ are totally isotropic, and
(p− 1)Vodd ⊆ V∞, we have

〈g(u + w), g(v + z)〉 = 〈u + pw, v + pz〉 = 〈u, pz〉 + 〈pw, v〉
= 〈u, (p− 1)z + z〉 + 〈(p− 1)w + w, v〉 = 〈u, z〉 + 〈w, v〉
= 〈u + w, z〉 + 〈u + w, v〉 = 〈u + w, v + z〉.

Then g ∈ G(Vodd) fixes V∞ elementwise and sends W to W ′, which completes the
proof.

Lemma 3.4. Let W = N2s+1 be a Gabriel block of odd size 2s+1. Let f1, ..., f2s+1

be a basis of W relative to which the underlying bilinear form has basis J2s+1(0).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 13, pp. 197-239, September 2005

www.math.technion.ac.il/iic/ela



ELA

204 Fernando Szechtman

(a) If 0 ≤ k ≤ s then L2k+1(W ) = (f1, f3, f5, ..., f2k+1) and R2k+1(W ) =
(f2s+1, f2s−1, f2s−3, ..., f2(s−k)+1).

(b) If k ≥ s then L2k+1(W ) = R2k+1(W ) = W∞ = (f1, f3, f5, ..., f2s+1).
Proof. This follows easily from the definition of the operators L and R.
Lemma 3.5. Let W = N2s be a Gabriel block of even size 2s. Let f1, ..., f2s be a

basis of W relative to which the underlying bilinear form has basis J2s(0).
(a) If 0 ≤ k ≤ s − 1 then L2k+1(W ) = (f1, f3, f5, ..., f2k+1) and R2k+1(W ) =

(f2s, f2s−2, f2s−4, ..., f2(s−k)).
(b) If k ≥ s − 1 we have L2k+1(W ) = (f1, f3, f5, ..., f2s−1) = L∞(W ) and also

R2k+1(W ) = (f2s, f2s−2, f2s−4, ..., f2) = R∞(W ).
(c) W = L∞(W ) ⊕R∞(W ).
Proof. (a) and (b) follow easily from the definition of the operators L and R, and

(c) is consequence of (b).
Lemma 3.6. If V = U ⊥ W then

LkV (V ) = LkU (U) ⊥ LkW (W ) and RkV (V ) = RkU (U) ⊥ RkW (W ), k ≥ 1.

Proof. This follows easily from the definition of the operators L and R.
Lemma 3.7. Let 1 ≤ i ≤ t and 0 ≤ k, l.
(a) If k, l ≤ si. Then a basis for L2k+1(V )∩R2l+1(V )∩Vi is formed by all ei,p2c+1,

if any, such that 1 ≤ p ≤ mi and si − l ≤ c ≤ k.
(b) If k > si (resp. l > si) then a basis for L2k+1(V ) ∩R2l+1(V ) ∩ Vi is formed

by all ei,p2c+1 such that 1 ≤ p ≤ mi, 0 ≤ c ≤ si, and si − l ≤ c (resp. c ≤ k).
Proof. This follows from Lemmas 3.4 and 3.6 by means of the decompositions

(2.1), (3.1) and (3.2).
Lemma 3.8. Let k, l ≥ 0 and 1 ≤ i ≤ t. Then

L2k+1(V ) ∩R2l+1(V ) ∩ Vi �= (0)

if and only if k + l ≥ si.
Proof. This follows from Lemma 3.7.
Lemma 3.9. Let 1 ≤ i ≤ t and 0 ≤ j, k. Suppose i + j ≤ t and k ≤ si. Then

L(V ) ∩R2(si−k)+1(V ) ∩ Vi+j �= (0)

if and only if si − k ≥ si+j .
Proof. This is a particular case of Lemma 3.8.
Lemma 3.10. Let 1 ≤ i ≤ t and 0 ≤ k ≤ si. Then

L2k+1(V ) ∩R2(si−k)+1(V ) ∩ Vi = (ei,12k+1, ..., e
i,mi

2k+1).

Proof. This is a particular case of Lemma 3.7.
Definition 3.11. Consider the subspaces of V∞ defined as follows:

V (i) = ⊕
i≤j≤t

(Vj)∞, 1 ≤ i ≤ t
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and set V (i) = 0 for i > t.
Lemma 3.12. If 1 ≤ i ≤ t then

V (i) =
∑

0≤k≤si

L2k+1(V ) ∩R2(si−k)+1(V ).

Proof. By virtue of Lemmas 3.5, 3.6 and 3.8, and the decompositions (2.1), (3.1)
and (3.2) it follows that the right hand side is contained in V (i). By Lemma 3.10, if
i ≤ j ≤ t then

(Vj)∞ =
∑

0≤k≤sj

L2k+1(V ) ∩R2(sj−k)+1(V ) ∩ Vj ⊆
∑

0≤k≤si

L2k+1(V ) ∩R2(si−k)+1(V ),

as required.
Lemma 3.13. The subspaces V (i) are G-invariant.
Proof. This follows from Lemma 3.12.
Lemma 3.14. Let W = N2s+1 be a Gabriel block of odd size 2s + 1. Let

f1, ..., f2s+1 be a basis of W relative to which the underlying bilinear form, say φ,
has basis J2s+1(0). Then Rad(φ − φ′) = (f1 + f3 + · · · + f2s−1 + f2s+1).

Proof. Clearly the vector f1 + f3 + · · · + f2s−1 + f2s+1 belongs to the radical of
φ− φ′. Since the nullity of the matrix J2s+1(0)− J2s+1(0)′ is equal to one, the result
follows.

Notation 3.15. For each 1 ≤ i ≤ t and each 1 ≤ p ≤ mi let

Ei,p = ei,p1 + ei,p3 + · · · + ei,p2si+1.

Lemma 3.16. If 1 ≤ i ≤ t then

Rad(ϕ− ϕ′) ∩ Vi = (Ei,1, ..., Ei,mi).

Proof. By Lemma 3.14 we have

Rad(ϕ− ϕ′) ∩ Vi = ⊕
1≤p≤mi

Rad(ϕ− ϕ′) ∩ V i,p = ⊕
1≤p≤mi

(Ei,p) = (Ei,1, ..., Ei,mi).

Definition 3.17. Let 1 ≤ i; 0 ≤ k, j; 1 ≤ p, q. Suppose i + j ≤ t; k ≤ si − si+j ;
1 ≤ p ≤ mi; 1 ≤ q ≤ mi+j ; p �= q if j = 0. Consider the 1-parameter subgroup of
G(V i,p ⊥ V i+j,q) -or simply G(V i,p) if j = 0- formed by all gi,i+j,p,q2k+1,y ∈ G(Vodd), as y
runs through F , defined as follows.

For ease of notation we replace gi,i+j,p,q2k+1,y by g; si by s; ei,p1 , ..., ei,p2s+1 by e1, ..., e2s+1;
si+j by d; and ei+j,q1 , ..., ei+j,q2d+1 by f1, ..., f2d+1. If v ∈ Vodd then g fixes all basis vectors
of (3.3) not listed below and

g(e2k+1) = e2k+1 + yf1, g(f2) = f2 − ye2k+2,
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g(e2k+3) = e2k+3 + yf3, g(f4) = f4 − ye2k+4,

...

g(e2(k+d)−1) = e2(k+d)−1 + yf2d−1, g(f2d) = f2d − ye2(k+d),

g(e2(k+d)+1) = e2(k+d)+1 + yf2d+1.

To see that g indeed belongs to G(Vodd) it suffices to verify that the matrices of ϕ
relative to the bases B and ϕ(B) are equal. This is a simple computation involving
basis vectors from at most two Gabriel blocks, and we omit it.

Definition 3.18. For 1 ≤ i ≤ t, 1 ≤ p ≤ mi consider the 1-parameter subgroup
of G(V p

i ) formed by all gi,px ∈ G(Vodd), as x runs through F ∗, defined as follows.
For ease of notation we replace gi,px by g; si by s; and ei,p1 , ei,p2 , ..., ei,p2s+1 by

e1, e2, ..., e2s+1. If v ∈ V p
i then g fixes all basis vectors of (3.3) not listed below

and

g(e1) = xe1, g(e2) = x−1e2, ...,

g(e2s−1) = xe2s−1, g(e2s) = x−1e2s, g(e2s+1) = xe2s+1.

In this case one easily verifies that g ∈ G(Vodd).
Lemma 3.19. Suppose W is an F -vector space with a basis

f1
1 , ..., f

m
1 , f1

2 , ..., f
m
2 , ..., f1

s , ..., f
m
s .

For each 1 ≤ p ≤ m let

Ep = fp1 + fp2 + · · · + fps .

Suppose g ∈ EndF (W ) preserves each of the m-dimensional subspaces (f1
k , ..., f

m
k ),

where 1 ≤ k ≤ s, and also the m-dimensional subspace (E1, ..., Em). Suppose further
that g fixes all vectors f1

1 , ..., f
m
1 . Then g = 1.

Proof. From the invariance of the subspaces (f1
k , ..., f

m
k ) we have

g(fpk ) =
∑

1≤q≤m
ap,qk f qk ,

where ap,qk ∈ F . Since g fixes f1
1 , ..., f

m
1

ap,q1 = δp,q.

As g is linear

g(Ep) =
∑

1≤k≤s

∑
1≤q≤m

ap,qk f qk =
∑

1≤q≤m

∑
1≤k≤s

ap,qk f qk .
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But by the invariance of (E1, ..., Em) we also have

g(Ep) =
∑

1≤q≤m
bp,qEq =

∑
1≤q≤m

∑
1≤k≤s

bp,qf qk ,

where bp,q ∈ F . Therefore ap,qk is independent of k, and in particular

ap,qk = ap,q1 = δp,q,

as required.

4. The split extension 1 → N → G → G/N → 1.
Definition 4.1. For j ≥ 1 consider the subgroup Nj of G defined by

Nj = ∩
1≤i≤t

G[V (i)/V (i + j)],

and set N = N1. Each Nj is normal due to Lemma 3.13. Note that

N = N1 ⊇ N2 ⊇ · · · ⊇ Nt = G[V∞], Nj = G[V∞], if j ≥ t.

Definition 4.2. For 1 ≤ i ≤ t let Ei be the subgroup of G(Vi) generated by all
gi,i,p,q1,y and all gi,px . Let E be the subgroup of G(Vodd) generated by all Ei, 1 ≤ i ≤ t.
Let

E′
i = G(Vi) ∩G{V †

i }, 1 ≤ i ≤ t,

and consider the internal direct product

E′ = Π
1≤i≤t

E′
i.

Definition 4.3. For 1 ≤ i ≤ t and 0 ≤ k ≤ si consider the FG-submodule
Si2k+1 of V (i)/V (i + 1), defined by

Si2k+1 =
(
L2k+1(V ) ∩R2(si−k)+1(V ) ∩ V (i) + V (i + 1)

)
/V (i + 1).

We know from Lemma 3.10 that

Si2k+1 =
(

(ei,12k+1, ..., e
i,mi

2k+1) ⊕ V (i + 1)
)
/V (i + 1).

This yields the following decomposition of FG-modules

V (i)/V (i + 1) = ⊕
0≤k≤si

Si2k+1.

Theorem 4.4. The canonical map

G → Π
1≤i≤t

GL(Si1) ∼= Π
1≤i≤t

GLmi(F ) (4.1)
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is a split group epimorphism with kernel N . Moreover,

E′
i = Ei ∼= GLmi(F ) for all 1 ≤ i ≤ t, (4.2)

E′ = E,

and

G = N � E.

Proof. The above description of Si1 combined with Definitions 3.17 and 3.18 yield
that each map

Ei → GL(Si1), 1 ≤ i ≤ t.

is surjective, whence the map (4.1) is also surjective.
To see that the kernel of (4.1) is N we apply Lemmas 3.10, 3.16 and 3.19. Indeed,

if g ∈ G is in the kernel of (4.1) then the G-invariance of Rad(ϕ−ϕ′) ∩ V (i) + V (i +
1)/V (i + 1) and all Si2k+1, 0 ≤ k ≤ si, along with the fact that g acts trivially on Si1,
imply that g acts trivially on V (i)/V (i + 1) for all 1 ≤ i ≤ t, as required.

It follows that G = NE. But by definition E ⊆ E′ and E′ ∩ N = 1. Therefore
E′ = E, G = N � E, and Ei ∼= GLmi(F ) for all 1 ≤ i ≤ t. Since it is obvious that E
is the internal direct product of the Ei ⊆ E′

i, the proof is complete.

5. Irreducible constituents of V as an FG-module. The series

0 ⊆ V∞ ⊆ ∞V ⊆ V

reduces the search of irreducible constituents of the FG-module V to that of the
factors

V∞, ∞V/V∞, V/∞V.

First we consider the factor V∞.
Theorem 5.1. Each factor V (i)/V (i+1), 1 ≤ i ≤ t, of the series of FG-modules

V∞ = V (1) ⊃ V (2) ⊃ · · · ⊃ V (t) ⊃ V (t + 1) = 0

is equal to the direct sum of si + 1 isomorphic irreducible FG-modules of dimension
mi

V (i)/V (i + 1) = ⊕
0≤k≤si

Si2k+1.

Moreover,

G[Si2k+1] = N � Π
l �=i

Ei,
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and as a module for

G/G[Si2k+1] ∼= Ei ∼= GLmi(F ),

Si2k+1 is isomorphic to the natural mi-dimensional module over F , namely Fmi .
Proof. This is clear from section §4.
Next we make preliminary remarks about the factor ∞V/V∞.
Definition 5.2. Let V ∞ = L∞(V ) ∩R∞(V ) and ∞V = L∞(V ) + R∞(V ).
By construction these are FG-submodules of V , and we know from [3] that

∞V = Veven ⊥ V∞ and V ∞ = Vndeg ⊥ V∞.

Observe that ∞V/V∞ is a bilinear space, with even and non-degenerate parts equal
to

∞V/V∞ ∼= Veven and V ∞/V∞ ∼= Vndeg.

Since the odd part of ∞V/V∞ is equal to zero, we know from [3] that even and
non-degenerate parts of ∞V/V∞ are unique, so

G(∞V/V∞) = G(∞V/V∞) ×G(V ∞/V∞).

It follows that the canonical map

G(V ) → G(∞V/V∞)

is a group epimorphism whose restriction to G(Veven) ×G(Vndeg) is an isomorphism.
Since the kernel of this map is G[∞V/V∞], whose intersection with G(Veven)×G(Vndeg)
is trivial, we obtain the decomposition

G(V ) = G[∞V/V∞] � G(Veven) ×G(Vndeg).

It follows from the above considerations that the study of the FG-module ∞V/V∞
reduces to the study of the FG(Veven)-module Veven and the FG(Vndeg)-module Vndeg.

6. The split extension 1→G[V∞]→N →N/G[V∞]→ 1. The very definition
of the groups Nj gives

[Ni, Nj ] ⊆ Ni+j ,

so (Nj)1≤j≤t yields a G-invariant descending central series for N/G[V∞]. By abuse of
language we shall sometimes say that (Nj)1≤j≤t and like series are central series for
N/G[V∞].

Notation 6.1. If g1, g2 ∈ G then [g2, g1] = g−1
2 g−1

1 g2g1. If n > 2 and
g1, ..., gn−1, gn ∈ G then [gn, gn−1, ..., g1] = [gn, [gn−1, ..., g1]].

Theorem 6.2. The nilpotency class of N/G[V∞] is t− 1.
Proof. By the above comments the nilpotency class of N/G[V∞] is at most t− 1.

If t > 1 then

[gt−1,t,1,1
1,1 , ..., g2,3,1,1

1,1 , g1,2,1,1
1,1 ] �= 1,

so the result follows.
The series (Nj)1≤j≤t needs to be refined in order to obtain sharper results on the

structure of N/G[V∞].
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6.1. Generators for nilpotent group N/G[V∞].
Definition 6.3. For k ≥ 0 define the normal subgroup M2k+1 of G by

M2k+1 = G[L2k+1(V ) ∩ V∞] ∩N.

We further define M−1 = N . Note that

N = M−1 ⊇ M1 ⊇ M3 ⊇ · · · ⊇ M2s1+1 = G[V∞],

with

M2k+1 = G[V∞], k ≥ s1.

We use the G-invariant series (M2k−1)0≤k to refine the G-invariant decreasing central
series (Nj)1≤j for N/G[V∞], obtaining the G-invariant decreasing central series for
N/G[V∞]

Nj,2k−1 = (Nj ∩M2k−1)Nj+1, 0 ≤ k, 1 ≤ j. (6.1)

We have Nj,2s1+1 = Nj+1 = Nj+1,−1 and

N1 = N1,−1 ⊇ N1,1 ⊇ N1,3 ⊇ · · · ⊇ N1,2s1−1 ⊇ N2 ⊇ · · ·

Nt−1 = Nt−1,−1 ⊇ Nt−1,1 ⊇ · · · ⊇ Nt−1,2s1−1 ⊇ Nt−1,2s1+1 = Nt = 1.

Theorem 6.4. Let k ≥ 0. Then

M2k−1 ⊆ G[L2k+1(V ) ∩ V∞/L(V ) ∩ V∞].

Proof. We may assume k ≥ 1, for otherwise the result is trivial. Since

L2k+1(V ) ∩ V∞ = L2k+1(V ) ∩ V1 ⊕ · · · ⊕ L2k+1(V ) ∩ Vt, (6.2)

it suffices to show

(g − 1)L2k+1(V ) ∩ Vi ⊆ L(V ) ∩ V∞, g ∈ M2k−1, 1 ≤ i ≤ t. (6.3)

Fix i, 1 ≤ i ≤ t. If k > si then L2k+1(V ) ∩ Vi = L2k−1(V ) ∩ Vi, so (6.3) holds.
Suppose k ≤ si. Then

L2k+1(V ) ∩ Vi = L2k−1(V ) ∩ Vi ⊕ L2k+1(V ) ∩R2(si−k)+1(V ) ∩ Vi, (6.4)

so (6.3) is equivalent to

(g − 1)L2k+1(V ) ∩R2(si−k)+1(V ) ∩ Vi ⊆ L(V ) ∩ V∞, g ∈ M2k−1. (6.5)

By Lemma 3.10 a basis for L2k+1(V )∩R2(si−k)+1(V )∩ Vi is given by (ei,p2k+1)1≤p≤mi .
Let g ∈ M2k−1 and fix p, 1 ≤ p ≤ mi. We are reduced to show that g fixes ei,p2k+1

modulo L(V ) ∩ V∞. Since g ∈ N , we have

g(ei,p2k+1) = ei,p2k+1 + z,
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where z ∈ L2k+1(V ) ∩ V (i + 1). Suppose z /∈ L(V ) ∩ V (i + 1). Then

〈gei,p2k+1, e
l,q
2c 〉 �= 0

for some t ≥ l ≥ i + 1, 1 ≤ q ≤ ml and 1 ≤ c ≤ sl. Then

〈ei,p2k+1, g
−1el,q2c 〉 �= 0,

so g−1el,q2c has non-zero coefficient in ei,p2k . But g ∈ M2k−1 and l > i, so

0 �= 〈g−1el,q2c , e
i,p
2k−1〉 = 〈el,q2c , ge

i,p
2k−1〉 = 〈el,q2c , e

i,q
2k−1〉 = 0,

a contradiction.
Definition 6.5. Let 1 ≤ j and 0 ≤ k. Set

I(j, k) = {i ≥ 1 | 1 ≤ i ≤ t− j and k ≤ si − si+j}.

Note that I(j, k) = ∅ if j ≥ t or k > s1. For i ≥ 1 we set X(i, j, 2k − 1) = ∅ of
i /∈ I(j, k) and otherwise

X(i, j, 2k − 1) = {gi,i+j,p,q2k+1,y | 1 ≤ p ≤ mi, 1 ≤ q ≤ mi+j , y ∈ F}.

We further define

X(j, 2k − 1) = ∪
i≥1

X(i, j, 2k − 1), X(j) = ∪
k≥0

X(j, 2k − 1), X = ∪
j≥1

X(j).

Theorem 6.6. Let k ≥ 0 and j ≥ 1. Then X(j, 2k − 1) ⊆ M2k−1 ∩Nj and the
quotient group

(M2k−1 ∩Nj)M2k+1/(M2k−1 ∩Nj+1)M2k+1

is generated by the classes of all elements in X(j, 2k− 1). In particular, this quotient
is trivial if I(j, k) = ∅ (the converse is true and proved in Theorem 6.19 below).

Proof. Clearly X(j, 2k − 1) ⊆ M2k−1 ∩Nj . Let g ∈ M2k−1 ∩Nj . We claim that
for each i, 1 ≤ i ≤ t, there exists

hi ∈< X(i, j, 2k − 1) >< ∪
r>j

X(i, r, 2k − 1) > (6.6)

such that hig is the identity on L2k+1(V ) ∩ Vi.
To prove our claim we fix i, 1 ≤ i ≤ t. If k > si we take hi = 1. Suppose k ≤ si. In

view of g ∈ M2k−1 and the decomposition (6.4), it suffices to choose hi as in (6.6), so
that hig fixes every basis vector ei,p2k+1, 1 ≤ p ≤ mi, of L2k+1(V )∩R2(si−k)+1(V )∩Vi.
By Theorem 6.4 and the fact that g ∈ Nj, for each 1 ≤ p ≤ mi we have

g(ei,p2k+1) = ei,p2k+1 + z,
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where z ∈ L(V ) ∩ R2(si−k)+1(V ) ∩ V (i + j). If i + j > t then z = 0 and if i + j ≤ t
but k > si − si+j then z = 0 as well by Lemma 3.9. In both cases we take hi = 1.
Otherwise, again by Lemma 3.9, we may write

z = zi+j + · · · + zi+j+l,

where l ≥ 0, zi+j+b ∈ L(V ) ∩ R2(si−k)+1(V ) ∩ Vi+j+b and k ≤ si − si+j+b for all
0 ≤ b ≤ l.

It is know clear from the very definition of the gi,i+j+b,p,q2k+1,y that we may choose hi

as in (6.6) so that hig is the identity on each ei,p2k+1.
By construction hi is the identity on ⊕

l �=i
Vl. Therefore our claim and the decom-

position (6.2) imply that h1 · · ·htg is the identity on L2k+1(V )∩ V∞, i.e. h1 · · ·htg ∈
M2k+1. But if j < r then X(i, r, 2k− 1) ⊆ M2k−1 ∩Nj+1, so the class of g is equal to
the product of the classes of elements from X(j, 2k − 1), as required.

Theorem 6.7. Let k ≥ 0 and j ≥ 1. Then X(j, 2k − 1) ⊆ M2k−1 ∩Nj and the
quotient group

(M2k−1 ∩Nj)Nj+1/(M2k+1 ∩Nj)Nj+1

is generated by the classes of all elements in X(j, 2k− 1). In particular, this quotient
is trivial if I(j, k) = ∅ (the converse is true and proved in Theorem 6.19 below).

Proof. This follows from Theorem 6.6 and the Butterfly Lemma.
Theorem 6.8. Let 1 ≤ j < j′ ≤ t. Then X(l) ⊆ Nj for all j ≤ l < j′ and Nj/Nj′

is generated the classes of all these elements. In particular N/G[V∞] is generated by
the classes of all elements in X.

Proof. This follows from Theorem 6.7 via the series Nj,2k−1.
Definition 6.9. Let U be the subgroup of G(Vodd)∩N generated by X and let

U ′ = N ∩G(Vodd)∩G[V †
1 ]∩G[V †

1 ⊕ V †
2 /V

†
1 ]∩ · · · ∩G[V †

1 ⊕ · · · ⊕V †
t /V

†
1 ⊕ · · · ⊕ V †

t−1].

It is clear that N/G[V∞] is a unipotent subgroup of V∞. The next result shows
that N = G[V∞] � U , where U is unipotent in V .

Theorem 6.10. U ′ = U is unipotent and N = G[V∞] � U .
Proof. From Theorem 6.8 we infer N = G[V∞]U . The definition of X yields

U ⊆ U ′. But by Lemma 3.1

G[V∞] ∩ U ′ ⊆ G[V∞] ∩G[V/∞V ] ∩ U ′ = 1.

It follows that U = U ′ and N = G[V∞] � U .
Finally, if g ∈ U then g − 1|V †

odd
is nilpotent by the very definition of U ′, and

g − 1|∞V is nilpotent since g ∈ N . Thus g is unipotent.

6.2. Irreducible constituents of the FG-module V/∞V . We have accumu-
lated enough information to determine the irreducible constituents of the FG-module
V/∞V .
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Definition 6.11. Let t = t if st > 0 (i.e. Rad(V ) = 0) and t = t − 1 if st = 0
(i.e. Rad(V ) �= 0).

Definition 6.12. For 1 ≤ i ≤ t let

(i)V = V †
1 ⊕ · · · ⊕ V †

i ⊕ ∞V

and set

(0)V = ∞V .

Lemma 6.13. If 0 ≤ i ≤ t then (i)V is an FG-submodule of V .
Proof. We may assume that i ≥ 1. From the identity N = G[V∞] � U , the

inclusion G[V∞] ⊆ G[V/∞V ] of Lemma 3.1, and the characterization of U given in
Theorem 6.10 we infer that (i)V is preserved by N . The very definition of E and
the identity G = N � E of Theorem 4.4 allow us to conclude that (i)V is in fact
G-invariant.

Lemma 6.14. If 1 ≤ i ≤ t then (i)V/(i − 1)V is an FG-module acted upon
trivially by N .

Proof. The characterization of U given in Theorem 6.10 shows that U acts trivially
on (i)V/(i− 1)V , while Lemma 3.1 shows that G[V∞] also acts trivially on (i)V/(i−
1)V . Since N = G[V∞] � U , the result follows.

Theorem 6.15. Each factor (i)V/V (i − 1), 1 ≤ i ≤ t, of the series of FG-
modules

∞V = (0)V ⊂ (1)V ⊂ · · · ⊂ (t − 1)V ⊂ (t)V = V

is isomorphic to the direct sum of si isomorphic irreducible FG-modules of dimension
mi, namely

Qi
2k =

(
(ei,12k , ..., e

i,mi

2k ) ⊕ (i− 1)V
)
/(i− 1)V,

where 1 ≤ k ≤ si. Moreover,

G[Qi
2k] = N � Π

l �=i
Ei,

and as a module for

G/G[Qi
2k] ∼= Ei ∼= GLmi(F ),

Qi
2k is isomorphic to the natural mi-dimensional module over F , namely Fmi .
Proof. This follows from Lemma 6.14 and (4.2).

6.3. A refined G-invariant descending central series for N/G[V∞]. In
this section we construct a G-invariant descending central series for N/G[V∞] each
of whose factors is naturally an irreducible FG-module, whose isomorphism type we
explicitly determine, all of which are connected to the irreducible constituents of the
FG-module V∞, as described in Theorem 5.1
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Theorem 6.16. For each j ≥ 1 there is a canonical group embedding

Nj/Nj+1 → ⊕
1≤i≤t−1

HomF (V (i)/V (i + 1), V (i + j)/V (i + j + 1)),

whose image is an F -vector subspace of the codomain. By transferring this F -vector
space structure to Nj/Nj+1 the above map becomes an embedding of FG-modules.

Proof. Recall first of all that since V (i)/V (i + 1) and V (i + j)/V (i + j + 1) are
FG-modules, so is HomF (V (i)/V (i + 1), V (i + j)/V (i + j + 1)) in a natural manner.

Define the map Nj/Nj+1 → HomF (V (i)/V (i+ 1), V (i+ j)/V (i+ j + 1)), 1 ≤ i ≤
t− 1, by [g] �→ gi, where g ∈ Nj and

gi(v + V (i + 1)) = (g − 1)(v) + V (i + j + 1), v ∈ V (i).

Then let Nj/Nj+1 → ⊕
1≤i≤t−1

HomF (V (i)/V (i + 1), V (i + j)/V (i + j + 1)) be defined

by

[g] �→ (g1, ..., gt−1), g ∈ Nj .

The definitions of all objects involved and the identity

gh− 1 = (g − 1)(h− 1) + (h− 1) + (g − 1), g, h ∈ G

show that our map is a well-defined group monomorphism which is compatible with
the action of G on both sides.

It remains to show that the image of our map is an F -subspace of the codomain.
By Theorem 6.8 Nj/Nj+1 is generated by all gNj+1 as g runs through X(j). Since
our map is a group homomorphism, it suffices to show that k(g − 1) + 1 ∈ Nj for all
g ∈ X(j) and k ∈ F . But Definition 3.17 makes this clear, so the proof is complete.

Note 6.17. Let k ≥ 0 and j ≥ 1. Notice that the group Nj,2k−1/Nj,2k+1 is a
section of the FG-module Nj/Nj+1 of Theorem 6.16, and as such inherits a natural
structure of FG-module.

Definition 6.18. Let k ≥ 0 and j ≥ 1. For each 1 ≤ i ≤ t define

Ni,j,2k−1 = {g ∈ Nj,2k−1 | (g−1)L2k+1(V )∩V (l) ⊆ V (l+j+1) for all 1 ≤ l ≤ t, l �= i}.

Note that for each 1 ≤ i ≤ t, Ni,j,2k−1 is a normal subgroup of G containing
Nj,2k+1. As a section of Nj/Nj+1, the group Ni,j,2k−1/Nj,2k+1 is also an FG-module.

Recall at this point the meaning of the FG-modules Si2k+1, as given in Definition
4.3.

Theorem 6.19. Let k ≥ 0 and j ≥ 1. For each i ∈ I(j, k) there is a canonical
isomorphism of FG-modules

Yi : Ni,j,2k−1/Nj,2k+1 → HomF (Si2k+1, S
i+j
1 ). (6.7)

Moreover, we have X(i, j, 2k − 1) ⊆ Ni,j,2k−1, and Ni,j,2k−1/Nj,2k+1 is generated by
the classes of all elements in X(i, j, 2k − 1).
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There is a canonical isomorphism of FG-modules

Y : (Nj ∩M2k−1)Nj+1/(Nj ∩M2k+1)Nj+1 → ⊕
i∈I(j,k)

HomF (Si2k+1, S
i+j
1 ).

induced by the Yi. The dimension of both of these modules, say dj,2k−1, is equal to
dj,2k−1 =

∑
i∈I(j,k)

mimi+j. Moreover, we have

(Nj ∩M2k−1)Nj+1/(Nj ∩M2k+1)Nj+1 = Π
i∈I(j,k)

Ni,j,2k−1/Nj,2k+1. (6.8)

Proof. Let i ∈ I(j, k). In the spirit of Theorem 6.16 we consider the map

Yi : (Nj ∩M2k−1)Nj+1/(Nj ∩M2k+1)Nj+1 → HomF (Si2k+1, S
i+j
1 )

given by [g] �→ gi, where g ∈ (Nj ∩M2k−1)Nj+1 and

gi(v + V (i + 1)) = (g − 1)(v) + V (i + j + 1),

for all v ∈ L2k+1(V ) ∩R2(si−k)+1(V ) ∩ V (i) + V (i + 1).
Step I: Yi is a well-defined homomorphism of FG-modules.
Let g ∈ (Nj∩M2k−1)Nj+1. We claim that (g−1)v ∈ L(V )∩V (i+j)+V (i+j+1)

for all v ∈ L2k+1(V )∩R2(si−k)+1(V )∩V (i)+V (i+1), and that (g−1)v+V (i+ j+1)
depends only on v + V (i + j), that is, gi is a well-defined function Si2k+1 → Si+j1 .

Since Nj ∩M2k−1 and Nj+1 are normal subgroups of G we may write g = g1g2,
where g1 ∈ Nj ∩M2k−1 and g2 ∈ Nj+1. Then

g − 1 = g1g2 − 1 = g1(g2 − 1 + 1) − 1 = g1(g2 − 1) + (g1 − 1).

Suppose first v ∈ V (i + 1). Then from g ∈ Nj it follows (g − 1)v ∈ V (i + j + 1).
Suppose next v ∈ L2k+1(V ) ∩ R2(si−k)+1(V ) ∩ V (i). Then g2 ∈ Nj+1 implies (g2 −
1)v ∈ V (i + j + 1), while Theorem 6.4 and the definition of Nj give (g1 − 1)v ∈
L(V ) ∩ R2(si−k)+1(V ) ∩ V (i + j). But i ∈ I(j, k), so si − k ≥ si+j and therefore
Lemma 3.7 gives

L(V ) ∩R2(si−k)+1(V ) ∩ V (i + j) + V (i + j + 1) = L(V ) ∩ V (i + j) + V (i + j + 1).

Thus (g2 − 1)v ∈ L(V ) ∩ V (i + j) + V (i + j + 1). Our claim now follows from the
above considerations.

We next claim that gi depends only on the class [g] = g(Nj ∩M2k+1)Nj+1 of g.
For this purpose let h ∈ (Nj ∩ M2k+1)Nj+1. We may again write h = h1h2, where
h1 ∈ Nj ∩M2k+1 and h2 ∈ Nj+1. Let v ∈ L2k+1(V )∩R2(si−k)+1(V )∩V (i). As above
(h2 − 1) ∈ V (i+ j + 1), while the very definition of M2k+1 ensures that (h1 − 1)v = 0.
It follows that (h− 1)v ∈ V (i + j + 1), thereby proving our claim.

Since it is clear that gi is not just a function Si2k+1 → Si+j1 but also a linear map,
what we have proven so far is that Yi is a well-defined function.
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We next claim that Yi is a group homomorphism. Indeed, let g, h ∈ (Nj ∩
M2k−1)Nj+1. Let v ∈ L2k+1(V ) ∩R2(si−k)+1(V ) ∩ V (i). Then

(gh− 1)v + V (i + j + 1) = (h− 1)v + (g − 1)v + (g − 1)(h− 1)v + V (i + j + 1).

Since (h − 1)v ∈ L(V ) ∩ V (i + j) + V (i + j + 1) ∩ V (i + j), and g ∈ Nj gives
(g − 1)V (i + j) ⊆ V (i + j + 1), we deduce (g − 1)(h− 1)v ∈ V (i + j + 1). It follows
that

(gh− 1)v + V (i + j + 1) = (h− 1)v + (g − 1)v + V (i + j + 1),

thereby proving our claim. We only remaining details to check is that Yi commutes
with the actions of G and F , but this is straightforward and we can safely omit the
details.

Step II: Yi restricted to a subgroup Ri is an isomorphism.
We again let i ∈ I(j, k). By Theorem 6.7 we know that X(i, j, 2k−1) is contained

in (Nj∩M2k−1)Nj+1. Let Ri be the subgroup of (Nj∩M2k−1)Nj+1/Nj∩M2k+1)Nj+1

generated by the classes of all elements in X(i, j, 2k−1). The construction of Ri along
with Definitions 3.17 and 6.18 show that

Ri ⊆ Ni,j,2k−1/Nj,2k+1. (6.9)

Moreover, the definition of Yi along with Definition 3.17 show that the images under
Yi of the elements

gi,i+j,p,q2k+1,1 Nj,2k+1 ∈ Ri, 1 ≤ p ≤ mi, 1 ≤ q ≤ mi+j , (6.10)

form an F -basis of HomF (Si2k+1, S
i+j
1 ). From Theorem 5.1 we know that this space is

mimi+j-dimensional. But the mimi+j elements (6.10) generate Ri as a vector space.
It follows that the restriction of Yi to Ri is an isomorphism and

dimRi = mimi+j . (6.11)

Step III: Y is an isomorphism.
Let

Y : Nj,2k−1/Nj,2k+1 → ⊕
i∈I(j,k)

HomF (Si2k+1, S
i+j
1 )

be the homomorphism of FG-modules induced by the Yi, i ∈ I(j, k). The very
definitions of Yi and Ni,j,2k−1 show that

Ni,j,2k−1/Nj,2k+1 ⊆ kerYi′ , i �= i′ ∈ I(j, k). (6.12)

We deduce from (6.9) that

Ri ⊆ kerYi′ , i �= i′ ∈ I(j, k).
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Thus the image under Y of the product of the subgroups Ri of Nj,2k−1/Nj,2k+1, as i

ranges through I(j, k), is equal to ⊕
i∈I(j,k)

HomF (Si2k+1, S
i+j
1 ). Since each summand in

this space has dimension mimi+j , the entire space has dimension dj,2k−1. But from
Theorem 6.7 we see that

dimNj,2k−1/Nj,2k+1 ≤ dj,2k−1.

Since by above Y is an epimorphism, we deduce that Y is an isomorphism and

dimNj,2k−1/Nj,2k+1 = dj,2k−1. (6.13)

Step IV: Nj,2k−1/Nj,2k+1 is internal direct product of the Ri.
By Theorem 6.7 we know that Nj,2k−1/Nj,2k+1 is generated as an F -vector space

by its subspaces Ri, i ∈ I(j, k). We infer from (6.11) and (6.13) that as a vector space
Nj,2k−1/Nj,2k+1 is the direct sum of the Ri, therefore as groups we have the following
internal direct product decomposition

Nj,2k−1/Nj,2k+1 = Π
i∈I(j,k)

Ri.

Step V: Ni,j,2k−1/Nj,2k+1 = Ri for all i ∈ I(j, k).
Let i ∈ I(j, k). In view of (6.9) and (6.11) it suffices to prove that

dimNi,j,2k−1/Nj,2k+1 ≤ mimi+j .

For this purpose let Pi denote the product of all Ni′,j,2k−1/Nj,2k+1, i �= i′ ∈ I(j, k).
From (6.12) we see that Pi is contained in the kernel of Yi. This fact and a new
application of (6.12) yield that Pi ∩ (Ni,j,2k−1/Nj,2k+1) is contained in the kernel of
Y . But Y is an isomorphism, so

Pi ∩ (Ni,j,2k−1/Nj,2k+1) = 1, i ∈ I(j, k). (6.14)

But Pi contains all classes of elements in X(i′, j, 2k−1), i �= i′ ∈ I(j, k), so by Theorem
6.7 the dimension of the quotient space of Nj,2k−1/Nj,2k+1 by Pi has dimension at
most mimi+j . This and (6.14) imply

dimNi,j,2k−1/Nj,2k+1 ≤ mimi+j ,

as required. This completes the proof of the theorem.
Theorem 6.20. dimU =

∑
1≤i<j≤t

(si − sj + 1)mimj .

Proof. By Theorem 6.19 we have

dimU =
∑
1≤j

∑
0≤k

∑
i∈I(j,k)

mimi+j =
∑

1≤i<j≤t
(si − sj + 1)mimj .

Definition 6.21. For each j ≥ 1 let k(j) be the largest integer k such that
I(j, k) is non-empty.
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Theorem 6.22. There is a canonical G-invariant descending central series for
N/G[V∞] each of whose factors is naturally an irreducible FG-module, which can be
obtained as follows.

We start with G-invariant decreasing central series

(Nj,2k−1/G[V∞])1≤j,0≤k

of N/G[V∞] defined in (6.1) and refine it by means of the decomposition (6.8). The
only non-trivial factors thus arising are

Ni,j,2k−1/Nj,2k−1
∼=FG HomF (Si2k+1, S

i+j
1 ), (6.15)

where 1 ≤ j < t − 1, 0 ≤ k ≤ k(j), i ∈ I(j, k), the dimension of HomF (Si2k+1, S
i+j
1 )

is mimi+j , and the Si2k+1, S
i+j
1 are amongst the irreducible constituents of the FG-

module V∞ determined in Theorem 5.1.
Each of the factors (6.15) is an irreducible FG-module whose isomorphism type

depends only on i and j, and whose multiplicity in the series is exactly si − sj + 1.
Moreover, G[Ni,j,2k−1/Nj,2k−1] contains N and all El, where 1 ≤ l ≤ t, l �= i, i + j,
and as a module over

G/G[Ni,j,2k−1/Nj,2k−1] ∼= Ei+j ×Ei ∼= GLmi+j (F ) × GLmi(F )

we have

Ni,j,2k−1/Nj,2k−1
∼= Mmi+jmi(F ),

where the action is given by

(X,Y ) · A = XAY −1, X ∈ GLmi+j (F ), A ∈ Mmi+jmi(F ), Y ∈ GLmi(F ).

Proof. By Theorem 6.19 the only non-trivial factors of the series

(Nj,2k−1/G[V∞])1≤j,0≤k

are of the form HomF (Si2k+1, S
i+j
1 ), where 1 ≤ j < t − 1, 0 ≤ k ≤ k(j), i ∈ I(j, k).

From Theorem 5.1 we know that N acts trivially on all this factors, that El also acts
trivially on them if l �= i, i+ j, and that Ei+j ×Ei acts irreducibly as indicated. Since
such factor appears as many times as k is between 0 and si−si+j , the result follows.

7. The split extension G[V∞] of G[V∞] ∩G[∞V/V∞].
Theorem 7.1. The canonical restriction map G[V∞] → G(∞V/V∞) is a split

group epimorphism of kernel G[V∞]∩G[∞V/V∞] and complement G(Veven)×G(Vndeg).
Moreover, U normalizes E, so that

G{V †
odd} ∩G(Vodd) = U � E, (7.1)

G = G[V∞] � (U � E), (7.2)
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and

G = (G[V∞] ∩G[∞V/V∞]) � (G(Veven) ×G(Vndeg) × (U � E)) ,

where the structure of U as a group under the action of E is described in section 6.
Proof. We know from [3] that G(∞V/V∞) preserves the even and non-degenerate

parts of ∞V/V∞. It follows that the restriction map

G(Veven) ×G(Vndeg) ↪→ G[V∞] → G(∞V/V∞)

is a group isomorphism. Since

G(Veven) ×G(Vndeg) ∩ (G[V∞] ∩G[∞V/V∞]) = 1,

we infer

G[V∞] = (G[V∞] ∩G[∞V/V∞]) � (G(Veven) ×G(Vndeg)).

The very characterizations of E and U given in Theorems 4.4 and 6.10 show that E
normalizes U , and both groups are contained in G{V †

odd} ∩ G(Vodd). Moreover, it is
obvious that G(Veven)×G(Vndeg) commutes elementwise with G(Vodd). Furthermore,
from Lemma 3.1 we deduce

G[V∞] ∩G{V †
odd} ∩G(Vodd) = 1.

The desired conclusion now follows from Theorems 4.4 and 6.10.

8. A criterion applicable to bilinear spaces of types E and I. We next
derive a criterion that yields the structure of the isometry group of a bilinear space
of type E, i.e. the space is equal to its even part, or type I, in C. Riehm’s notation.

Notation 8.1. If Y is an F -vector space and u ∈ End(Y ) then CGL(Y )(u)
denotes the centralizer of u in GL(Y ).

Notation 8.2. If Y and Z are F -vector spaces then Bil(Y, Z) denotes the
F -vector space of all bilinear forms Y × Z → F . We say that φ ∈ Bil(Y, Z) is
non-degenerate if its left and right radicals are equal to (0).

Theorem 8.3. Let (W,φ) be a bilinear space. Suppose there exists G(W,φ)-
invariant totally isotropic subspaces Y and Z of W such that W = Y ⊕Z and φ|Z×Y
is non-degenerate. Then

(1) There exists a unique u ∈ EndF (Y ) such that

φ(y, z) = φ(z, uy), y ∈ Y, z ∈ Z. (8.1)

(2) If g ∈ G(W,φ) then g|Y ∈ CGL(Y )(u).
(3) The canonical restriction map ρ : G(W,φ) → CGL(Y )(u), given by g �→ g|Y ,

is a group isomorphism.
Proof. Consider the linear map A : EndF (Y ) → Bil(Y, Z), given by u �→ φu,

where

φu(y, z) = φ(z, uy), y ∈ Y, z ∈ Z.
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Since the right radical of φ|Z×Y is (0), it follows that A is a monomorphism. As the
left radical of φ|Z×Y is also (0), we infer dimY = dimZ, whence dim EndF (Y ) =
dim Bil(Y, Z), so A is an isomorphism. In particular, there exists a unique u ∈
EndF (Y ) such that A(u) = φ|Y×Z .

Let g ∈ G(W,φ). For y ∈ Y and z ∈ Z, since both Y and Z are G(W,φ)-invariant,
(8.1) gives

φ(z, guy) = φ(g−1z, uy) = φ(y, g−1z) = φ(gy, z) = φ(z, ugy).

As the right radical of φ|Z×Y is (0), we deduce g|Y ∈ CGL(Y )(u).
Let g ∈ ker ρ. For y ∈ Y and z ∈ Z we have

φ(gz, y) = φ(gz, gy) = φ(z, y).

As the left radical of φ|Z×Y is (0), we obtain g|Z = 1Z. But W = Y ⊕ Z, so g = 1.
This proves that ρ is injective.

Let b ∈ CGL(Y )(u). Consider the linear map EndF (Z) → Bil(Z, Y ), given by
c �→ φc, where

φc(z, y) = φ(cz, y), y ∈ Y, z ∈ Z.

As above, this is an isomorphism. In particular, there exists a unique c ∈ EndF (Z)
such that

φ(cz, y) = φ(z, b−1y), y ∈ Y, z ∈ Z.

As b ∈ GL(V ) and left radical of φ|Z×Y is (0), we infer that c ∈ GL(Z). We may
re-write the above equation in the form

φ(cz, by) = φ(z, y), y ∈ Y, z ∈ Z. (8.2)

Let g = b ⊕ c ∈ GL(W ). Let y1, y2 ∈ Y and z1, z2 ∈ Z. Since Y and Z are totally
isotropic, (8.1) and (8.2) along with b ∈ CGL(Y )(u) give

φ(g(y1 + z1), g(y2 + z2)) = φ(by1 + cz1, by2 + cz2) = φ(by1, cz2) + φ(cz1, by2)
= φ(cz2, uby1) + φ(z1, y2) = φ(cz2, buy1) + φ(z1, y2)
= φ(z2, uy1) + φ(z1, y2) = φ(y1, z2) + φ(z1, y2)
= φ(y1 + z1, z2) + φ(y1 + z1, y2) = φ(y1 + z1, y2 + z2).

Therefore g ∈ G(W,φ). By construction ρ(g) = b, so ρ is an epimorphism, thus
completing the proof.

Note 8.4. Observe that Z∗, the dual of Z, is an FG(W,φ)-module in the
usual way. Moreover, Y and Z∗ are isomorphic, as FG(W,φ)-modules, via the map
y �→ φ(−, y).
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8.1. Structure of G(Veven).
Theorem 8.5. Suppose that V = Veven. Then
(1) For uniquely determined positive integers ni and ri we have an equivalence of

bilinear spaces

V ∼= ⊥
1≤i≤d

niN2ri .

(2) There exists a unique u ∈ EndF (L∞(V )) such that

ϕ(l, r) = ϕ(r, ul), l ∈ L∞(V ), r ∈ R∞(V ).

The endomorphism u is nilpotent, with elementary divisors tr1 , ..., trd and multiplici-
ties n1, ..., nd.

(3) The canonical restriction map ρ : G(V ) → CGL(L∞(V ))(u), given by g �→
g|L∞(V ), is a group isomorphism.

Proof. The first assertion follows from Theorem 2.1. By means of Lemmas 3.5
and 3.6 we deduce that the subspaces L∞(V ) and R∞(V ) of V satisfy the hypotheses
of Theorem 8.3. This theorem yields all remaining assertions, except for the similarity
type of u. By hypothesis there is a basis of V relative to which the matrix of ϕ is equal
to ⊕

1≤i≤d
niJ2ri(0). A suitable rearrangement of this basis which puts first all basis

vectors of R∞(V ) and second all basis vectors of L∞(V ) yields a new basis relative
to which the matrix of ϕ is equal to (

0 1
J 0

)
,

where J = ⊕
1≤i≤d

niJri(0). Since J is the matrix of u in the above basis of L∞(V ), the

similarity type of u is as given.

8.2. Irreducible constituents of the FG(Veven)-module Veven. We know
from Note 8.4 that R∞(V )∗ ∼= L∞(V ), as FG-modules. In view this, the decompo-
sition V = L∞(V ) ⊕ R∞(V ) and Theorem 8.5, it suffices to restrict ourselves to the
classical case of finding the irreducible constituents of L∞(V ) as an FCGL(L∞(V ))(u)-
module. This is well known and will be omitted.

9. Structure of G(Vndeg). We assume here that V = Vndeg. Note that Bil(V )
is a natural right End(V )-module via

(φ · u)(x, y) = φ(x, uy), φ ∈ Bil(V ), u ∈ End(V ), x, y ∈ V.

For a fixed φ ∈ Bil(V ) the map End(V ) → Bil(V ) given by u → φ · u is a linear
isomorphism if and only if φ is non-degenerate, in which case u is invertible if and
only if φ · u is non-degenerate. In this case, given any ψ ∈ Bil(V ) we shall write uφ,ψ
for the unique u ∈ End(V ) such that ψ(x, y) = φ(x, uy).

Since ϕ is non-degenerate, we may use it to represent any bilinear form, in par-
ticular ϕ′. We write σ = uϕ,ϕ′ for the asymmetry of ϕ, i.e. the element of GL(V )
satisfying

ϕ′(x, y) = ϕ(x, σ(y)), x, y ∈ V.
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This linear operator measures how far is ϕ from being symmetric. We have

ϕ(x, y) = ϕ(y, σ(x)) = ϕ(σ(x), σ(y)) x, y ∈ V,

so that σ ∈ G. In fact, it is easy to see that σ belongs to the center Z(G) of G.
Let F [t] denote the polynomial algebra in one variable t over F . We view V as

an F [t]-module via σ. For 0 �= q ∈ F [t], consider the adjoint polynomial q∗ ∈ F [t],
defined by

q∗(t) = tdeg qq(1/t).

The minimal polynomial of σ will be denoted by pσ ∈ F [t]. Let P stand for
the set of all monic irreducible polynomials in F [t] dividing pσ. For p ∈ P let Vp
denote the primary component of σ associated to p. Since σ ∈ Z(G), each primary
component is G-invariant. We consider the subsets of P :

P1 = {p ∈ P | p∗ �= ±p} and P2 = {p ∈ P | p∗ = ±p}.
We construct a subset P ′

1 of P1 by selecting one element out of each set P1∩{±p,±p∗},
as p ranges through P1. It follows at once from [7] that

G(V ) ∼=
(

Π
p∈P′

1

G(Vp ⊕ Vp∗)
)

Π
(

Π
p∈P2

G(Vp)
)

(9.1)

Thus the study of G reduces to two cases:
Case I: V = Vp ⊕ Vp∗ , p∗ �= ±p.
Case II: V = Vp, p∗ = ±p.
We break II up into two cases:
Case IIa: deg p > 1 or charF �= 2.
Case IIb: deg p = 1 and charF = 2.

9.1. Case I. We assume here that p is a monic irreducible polynomial in F [t]
dividing pσ such that p∗ �= ±p and V = Vp⊕Vp∗ . In particular, (p, p∗) = 1. As shown
in [7] the G-invariant F [t]-submodules Vp and Vp∗ of V are totally isotropic. In view
of Theorem 8.3, we have the following result.

Theorem 9.1. The restriction map ρ : G → CGL(Vp)(σ|Vp ) is an isomorphism.
Note that when F is algebraically closed p = t− λ for some λ ∈ F different from

1 and −1. In this case then G becomes isomorphic to the centralizer of a nilpotent
element in the general linear group (as adding a scalar operator does not change the
centralizer).

9.2. Case IIa. We assume here that p is a monic irreducible polynomial in F [t]
dividing pσ such that p∗ = ±p and V = Vp. We further assume that deg p > 1 or
charF �= 2. The symmetric and alternating parts of ϕ are defined by ϕ± = ϕ ± ϕ′.
Clearly G(ϕ) ⊆ G(ϕ+) ∩G(ϕ−), with equality if charF �= 2.

Lemma 9.2. ϕ± is non-degenerate if and only if pσ(∓1) �= 0.
Proof. This follows from the identity

ϕ±(x, y) = ϕ(x, (1 ± σ)y), x, y ∈ V.
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If ϕ+ is non-degenerate, we write σ+− = uϕ+,ϕ− and σ+ = uϕ+,ϕ; moreover, we
denote the isometry group of ϕ+ by O(ϕ+) and the associated Lie algebra by o(ϕ+). If
ϕ− is non-degenerate, we write σ−+ = uϕ−,ϕ+ and σ− = uϕ−,ϕ; moreover, we denote
the isometry group of ϕ− by Sp(ϕ−) and the associated Lie algebra by sp(ϕ+).

Lemma 9.3. If ϕ+ is non-degenerate then σ+− ∈ o(ϕ+). If ϕ− is non-degenerate
then σ−+ ∈ sp(ϕ−).

Proof. For all x, y in V we have

ϕ+(σ+−x, y) + ϕ+(x, σ+−y) = ϕ+(y, σ+−x) + ϕ−(x, y) = ϕ−(y, x) + ϕ−(x, y) = 0,

thereby proving the first assertion. The second is proved similarly.
Proposition 9.4. Suppose ϕ+ is non-degenerate. Then

G(ϕ) = CO(ϕ+)(σ+),

and if charF �= 2 then

G(ϕ) = CO(ϕ+)(σ+−).

Proof. Let a ∈ GL(V ). We have

a ∈ G(ϕ)

if and only if

ϕ(ax, ay) = ϕ(x, y), x, y ∈ V

if and only if

ϕ+(ax, σ+ay) = ϕ+(x, σ+y), x, y ∈ V

if and only if

ϕ+(x, a−1σ+ay) = ϕ+(x, σ+y), x, y ∈ V and a ∈ O(ϕ+)

if and only if

a ∈ CO(ϕ+)(σ+).

This proves the first assertion. As for the second, if charF �= 2 then

a ∈ G(ϕ)

if and only if

a ∈ O(ϕ+) and a ∈ G(ϕ−)

if and only if

a ∈ O(ϕ+) and ϕ−(ax, ay) = ϕ−(x, y), x, y ∈ V
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if and only if

a ∈ O(ϕ+) and ϕ+(ax, σ+−ay) = ϕ+(x, σ+−y), x, y ∈ V

if and only if

a ∈ O(ϕ+) and ϕ+(x, a−1σ+−ay) = ϕ+(x, σ+−y), x, y ∈ V

if and only if

a ∈ CO(ϕ+)(σ+−).

Proposition 9.5. Suppose ϕ− is non-degenerate. Then

G(ϕ) = CSp(ϕ−)(σ−),

and if charF �= 2 then

G(ϕ) = CSp(ϕ−)(σ−+).

Proof. This is similar to the above proof, mutatis mutandi.
We know from [7] that if deg p > 1 then deg p is even and p = p∗, while it is

obvious that if deg p = 1 then p = t± 1.
Theorem 9.6. (i) If deg p > 1 then ϕ± is non-degenerate, σ+− ∈ o(ϕ+), σ−+ ∈

sp(ϕ−) and

G = CO(ϕ+)(σ+) = CSp(ϕ−)(σ−).

Moreover, if charF �= 2 then

G = CO(ϕ+)(σ+−) = CSp(ϕ−)(σ−+).

(ii) If p = t− 1 and charF �= 2 then ϕ+ is non-degenerate, σ+− ∈ o(ϕ+) and

G = CO(ϕ+)(σ+) = CO(ϕ+)(σ+−).

(iii) If p = t + 1 and charF �= 2 then ϕ− is non-degenerate, σ−+ ∈ sp(ϕ−) and

G = CSp(ϕ−)(σ−) = CSp(ϕ−)(σ−+).

Proof. This follows from Lemmas 9.2 and 9.3, and Propositions 9.4 and 9.5.
For the remainder of this subsection we suppose that F is algebraically closed of

characteristic not 2. Then p = t± 1.
For convenience, we define n-by-n matrices Hn(λ) and Γn by

Hn(λ) =
(

0 Im
Jm(λ) 0

)
, n = 2m,λ ∈ F,
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and

Γn =




0 0 0 0 · · · 0 0 (−1)n−1

0 0 0 0 · · · 0 (−1)n−2 (−1)n−2

...
0 −1 −1 0 · · · 0 0 0
1 1 0 0 · · · 0 0 0


 .

We refer the reader to [9], and for an older version, [1], for a proof of the Canonical
Form Theorem for bilinear forms.

Theorem 9.7. (a) Any φ ∈ Bil(V ) admits an orthogonal direct decomposition

φ = φ1 ⊥ φ2 ⊥ · · · ⊥ φk,

where the φi’s are indecomposable bilinear forms which are unique up to equivalence
and permutation.

(b) If φ ∈ Bil(V ) is indecomposable then, with respect to a suitable basis of V , the
matrix of φ is one of the following:

(i) Hn(λ), n = 2m, λ �= (−1)m+1;
(ii) Γn, n ≥ 1;
(iii) Jn(0), n = 2m + 1.
(c) The matrices listed in part (b) are pairwise non-congruent except for the fact

that Hn(λ) and Hn(λ−1) are congruent when λ �= 0,±1.
We mention that, when n = 2m is even, Hn(0) is congruent to Jn(0).
Theorem 9.8. If p = t− 1 then ϕ+ is non-degenerate, σ+− belongs to so(ϕ+),

G = CO(ϕ+)(σ+−), and the linear operators σ − 1 and σ+− are nilpotent and similar
to each other (i.e., they have the same elementary divisors).

Proof. In view of Theorem 9.6 we are reduced to show the last assertion. It
suffices to verify this assertion for indecomposable ϕ. There are two cases to consider.
The matrix of ϕ will be denoted by Aϕ.

First, the matrix of ϕ is Hn(1) where n = 2m and m is even. Then the matrix of
u is −A−1

ϕ+Aϕ− . An easy computation shows that both σ−1 and σ+− have elementary
divisors tm and tm.

Second, the matrix of ϕ is Γn and n is odd. In that case the matrix Aϕ+ is
involutory and a simple computation shows that the matrix of σ+− is equal to −Jn(0)′.
Hence both σ − 1 and σ+− have only one elementary divisor, namely tn.

Theorem 9.9. If p = t + 1 then ϕ− is non-degenerate, σ−+ belongs to sp(ϕ−),
G = CSp(ϕ−)(σ−+), and the linear operators σ + 1 and σ−+ are nilpotent and similar
to each other (i.e., they have the same elementary divisors).

Proof. This proof is similar to the one above.

9.3. Case IIb. We have not been able to make progress on this case.

10. The 2-step nilpotent group G[V∞]∩G[∞V/V∞]. The divide the study of
G[V∞] ∩G[∞V/V∞] into two cases, namely that of G[V∞] ∩G[∞V/V∞]/G[∞V ] and
G[∞V ].
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10.1. Basic facts about G[V∞] ∩G[∞V/V∞].
Lemma 10.1. G[∞V ] is contained in the center of G[V∞] ∩G[∞V/V∞].
Proof. From Lemma 3.2 we know that G[∞V ] is contained in G[V∞] ∩G[V/V∞],

which is in turn contained in G[V∞] ∩G[∞V/V∞]. Let h ∈ G[V∞] ∩G[∞V/V∞] and
let g ∈ G[∞V ]. By Lemma 3.2 we have (g − 1)V ⊆ V∞. Since G[V∞] ∩G[∞V/V∞]
is the identity on V∞, we infer (h− 1)(g − 1)V = (0). Moreover, (h− 1)V ⊆ ∞V by
Lemma 3.1, whence (g − 1)(h− 1)V = 0 by the very definition of G[∞V ]. It follows
that

hg = h + g − 1 = gh, (10.1)

as required.
Lemma 10.2. G[V∞] ∩G[∞V/V∞] is nilpotent of class ≤ 2.
Proof. By Lemma 10.1 it suffices to show that G[V∞] ∩G[∞V/V∞]/G[∞V ] is

abelian. Let g, h ∈ G[V∞] ∩G[∞V/V∞] and let v ∈ ∞V . Since gv − v ∈ V∞, by the
definition of G[V∞] ∩G[∞V/V∞], and h is the identity on V∞, we have

h(g(v)) = h(g(v) − v + v) = gv − v + hv.

For the same reasons as above

(h−1g−1hg)(v) = h−1g−1(gv + hv − v) = h−1(v + hv − v) = h−1hv = v.

Thus [h, g] ∈ G[∞V ], as required.
Lemma 10.3. G[V∞] ∩ G[V/V∞] is an abelian unipotent normal subgroup of G.

In fact, if g, h ∈ G[V∞] ∩G[V/V∞] then

(h− 1)(g − 1) = 0. (10.2)

Proof. Since V∞ is G-invariant, it follows that G[V∞] ∩ G[V/V∞] is a normal
subgroup of G. If g, h ∈ G[V∞]∩G[V/V∞] then (g−1)V ⊆ V∞, so (h−1)(g−1)V = 0.
This completes the proof.

Lemma 10.4. G[V∞] ∩G[∞V/V∞] is a unipotent normal subgroup of G. In fact,
if g, h, k ∈ G[V∞] ∩G[∞V/V∞] then (k − 1)(h− 1)(g − 1) = (0).

Proof. Since ∞V and V∞ are G-invariant, it follows that G[V∞] ∩G[∞V/V∞]
is a normal subgroup of G. Let g, h, k ∈ G[V∞] ∩G[∞V/V∞]. By Lemma 3.1 we
have (g − 1)V ⊆ ∞V . From the very definition of G[V∞] ∩G[∞V/V∞] we obtain
(h− 1)(g− 1)V ⊆ V∞ and a fortiori (k− 1)(h− 1)(g− 1)V = (0). This completes the
proof.

10.2. Structure of the FG-module G[∞V ] ∩ G[V/Rad(V )]. The divide the
study of G[∞V ] into two cases, namely that of G[∞V ]/G[∞V ] ∩ G[V/Rad(V )] and
G[∞V ] ∩G[V/Rad(V )].

Theorem 10.5. The map G[∞V ] → EndF (V ) given by

g �→ g − 1 (10.3)
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is a group monomorphism whose image is an F -vector subspace of EndF (V ). By
transferring this F -vector space structure to G[V∞]∩G[V/V∞] the map (10.3) becomes
an FG-module monomorphism. The map (10.3) induces a monomorphism of FG-
modules

G[∞V ] → HomF (V/∞V, V∞),

and hence a monomorphism of F -vector spaces

G[∞V ] → HomF (V †
odd, V∞), (10.4)

namely by means of g �→ (g − 1)|V †
odd

.
Proof. The identity of (10.2) shows that (10.3) is a group homomorphism, which is

clearly injective and preserves the action of G. Suppose g ∈ G[∞V ] and k ∈ F . Then
k(g−1) + 1 is a linear automorphism of V which fixes ∞V pointwise, acts trivially on
V/V∞ and preserves the orthogonality of the generators ei,p2k of V †

odd. It follows that
k(g − 1) + 1 ∈ G[∞V ], so the image of (10.3) is a subspace of EndF (V ). By Lemma
3.2 we know that (10.3) maps G[∞V ] into HomF (V, V∞), and the very definition of
G[∞V ] yields an induced FG-monomorphism G[∞V ] → HomF (V/∞V, V∞). Since
V †

odd complements ∞V in V , the last assertion follows.
Lemma 10.6. G[∞V ] ∩G[V/L(V )] = G[∞V ] ∩G[V/Rad(V )].
Proof. By definition the right hand side is contained in the left hand side. Let

g ∈ G[∞V ] ∩ G[V/L(V )]. We wish to show that (g − 1)V ⊆ Rad(V ). Since g

is the identity on ∞V , it suffices to prove (g − 1)V †
odd ⊆ Rad(V ). By assumption

(g − 1)V †
odd ⊆ L(V ), so are reduced to demonstrate (g − 1)V †

odd ⊆ R(V ). By Lemma
3.2 we have (g − 1)V †

odd ⊆ V∞, which leave only the identity 〈V †
odd, (g − 1)V †

odd〉 = 0
to be shown. Well, if v, w ∈ V †

odd then gw − w ∈ L(V ), so

0 = 〈w, v〉 = 〈gw, gv〉 = 〈gw, gv〉 = 〈(gw − w) + w, gv〉 = 〈w, gv〉 = 〈w, gv − v〉,

as required.
Definition 10.7. Let Bil(V,∞V ) be the FG-submodule of Bil(V ) consisting of

all bilinear forms whose radical contains ∞V . Thus Bil(V,∞V ) and Bil(V/∞V ) are
isomorphic as FG-modules.

Theorem 10.8. The map G[∞V ] → Bil(V,∞V ) given by g �→ ϕg, where

ϕg(v, w) = ϕ((g − 1)v, w) = 〈(g − 1)v, w〉, v, w ∈ V,

is an FG-module homomorphism, inducing an FG-module homomorphism g �→ ϕ̂g
from G[∞V ] to Bil(V/∞V ). Both maps have kernel equal to G[∞V ]∩G[V/Rad(V )].

Proof. The fact that g �→ ϕg is a homomorphism of FG-modules is easily verified.
By the very definition of this map its kernel is equal to G[∞V ] ∩ G[V/L(V )], which
equals G[∞V ] ∩G[V/Rad(V )] by Lemma 10.6.

Notation 10.9. The image of G[∞V ] under the above FG-homomorphism
G[∞V ] → Bil(V/∞V ) will be denoted by S.
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Lemma 10.10. The restriction of (10.3) to G[∞V ] ∩ G[V/Rad(V )] yields an
isomorphism of FG-modules

G[∞V ] ∩G[V/Rad(V )] → HomF (V/∞V,Rad(V )). (10.5)

Proof. All maps of the form 1∞V ⊕ (1V †
odd

+ f), where f ∈ HomF (V †
odd,Rad(V )),

belong to G[∞V ]∩G[V/Rad(V )], thereby proving that (10.5) is an epimorphism. The
rest follows from Theorem 10.5.

Theorem 10.11. G[∞V ] ∩ G[V/Rad(V )] is an FG-module of dimension equal
to (dimV/∞V ) × (dim Rad(V )). If Rad(V ) �= 0 and V/∞V �= 0 its irreducible con-
stituents are of the form HomF (Qi

2k,Rad(V )), where the Qi
2k are the irreducible con-

stituents of the FG-module V/∞V described in Theorem 6.15. Each has dimension
mimt, 1 ≤ i < t, and multiplicity si with stabilizer Si = N � Π

l �=i,t
El. As a mod-

ule for G/Si ∼= Ei × Et ∼= GLmi(F ) × GLmt(F ), HomF (Qi
2k,Rad(V )) is isomorphic

to Mmtmi(F ), where (X,Y ) ∈ GLmi(F ) × GLmt(F ) acts on A ∈ Mmtmi(F ) by
(X,Y ) · A = Y AX−1.

Proof. This follows easily from Lemma 10.10 and Theorem 6.15.
We next wish to determine the structure of the remaining part of G[∞V ], namely

G[∞V ]/G[∞V ] ∩G[V/Rad(V )] ∼=FG S.

We digress to record some basic facts from Linear Algebra which will be required for
a complete understanding of the structure of S.

10.3. GLm(F ) acting by congruence on Mm(F ).
Definition 10.12. Let m ≥ 1. Denote by Sm(F ) and Am(F ) the set of all

m×m symmetric and alternating matrices over F , respectively.
Theorem 10.13. Let m ≥ 1. The irreducible constituents of Mm(F ) as a module

for GLm(F ) over F , acting by congruence are as follows.
(1) If charF �= 2 then

Mm(F ) = Sm(F ) ⊕Am(F ),

where both summands are irreducible if m > 1, while M1(F ) = S1(F ) is irreducible.
(2) If charF = 2 each factor of the GLm(F )-invariant series

0 ⊆ Am(F ) ⊆ Sm(F ) ⊆ Mm(F )

is irreducible, except when m = 1 in which case M1(F ) = S1(F ) is irreducible.
(3) Mm(F )/Sm(F ) is isomorphic to Am(F ).
Proof. Consider the homomorphism of GLm(F )-modules Mm(F ) → Am(F ),

given by A �→ A−A′. Since its kernel is Sm(F ), a dimension comparison shows that
its image is Am(F ). Therefore Mm(F )/Sm(F ) ∼= Am(F ). In view of this isomorphism
we may assume throughout that m > 1, and we are reduced to show that Am(F ) and
Sm(F )/Am(F ) are irreducible, in the later case when charF = 2.
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Step I: Am(F ) is irreducible. If m = 2, 3 there is a single non-zero GLm(F )-orbit
in Am(F ), which is then irreducible. Suppose m > 3. Let 0 �= M be any FGLm(F )-
submodule of Am(F ). To see that M = Am(F ) it suffices to show that M contains
a matrix of rank 2. It is well-known that M contains a matrix, say A, which is the

direct sum of at least one block of the form
(

0 1
−1 0

)
plus zero blocks. We may

assume that A has at least two non-zero blocks. Choose B in Am(F ) whose only
nonzero entries are in positions (2, 3) and (3, 2). Then A+B has the same rank as A
and so A + B is in M . Hence B is in M , as required.

Step II: Sm(F )/Am(F ) is irreducible if charF = 2. Let A ∈ Sm(F ) be a non-
alternating matrix. It is well-known A is congruent to a non-zero diagonal matrix, say
D. Thus, in order to show that the GLm(F )-submodule of Sm(F ), say M , generated
by A and Am(F ) is equal to Sm(F ), it suffices to show that M contains a matrix
of rank 1. Suppose D has rank > 1; by scaling D we may assume that its first two
diagonal entries are equal to 1. Let D1 be the matrix obtained from D by replacing

its top left 2×2 corner by
(

0 1
1 1

)
and let D2 ∈ Am(F ) be the direct sum of

(
0 1
1 0

)
and the zero block. Then D1 and D2 belong to M and D1−D2 is a non-zero diagonal
matrix whose first entry is 0. It follows by induction that M contains a matrix of
rank 1, as required.

Note 10.14. It might seem that all GLm(F )-submodules of Mm(F ) can be
obtained from above, but there is at least one exception. If F = F2 then S2(F ) is the
direct sum of the 1-dimensional submodule Am(F ) with the 2-dimensional submodule
generated by the identity matrix.

10.4. The structure of the FG-module G[∞V ]/(G[∞V ]∩G[V/Rad(V )]). We
refer the reader to the definition of the FG-submodules (i)V of V , and the irreducible
FG-modules Qi

2k built upon them, both of which are defined prior to Theorem 6.15.
Notation 10.15. If U and W are FG-modules, let Bil(U,W ) denote the FG-

module of all bilinear forms U ×W → F .
Definition 10.16. For 1 ≤ i ≤ t + 1 let

Mi = {φ ∈ Bil(V/∞V ) | (i− 1)V/(0)V ⊆ Rad(φ)}.

We have a series of FG-modules

Bil(V/∞V ) = M1 ⊃ M2 ⊃ · · · ⊃ Mt+1 = (0).

We further refine each link Mi ⊃ Mi+1, 1 ≤ i ≤ t of this chain as follows.
Definition 10.17. For 1 ≤ i ≤ j ≤ t + 1 let

Li,j = {φ ∈ Mi|φ((i)V/(0)V, (j−1)V/(0)V )=0 and φ((j−1)V/(0)V, (i)V/(0)V )=0}.

We have a series of FG-modules

Mi = Li,i ⊃ Li,i+1 ⊃ · · · ⊃ Li,t+1 = Mi+1.
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This yields a refined series of FG-modules for Bil(V/∞V ), and intersecting each term
with S we get a series of FG-modules for S. Our goal is to further refine this series
into a composition series for S, with known factors, as described below.

Let 1 ≤ i ≤ t. The very definition of Mi yields an isomorphism of FG-modules

Mi → Bil(V/(i− 1)V ). (10.6)

Post-composing (10.6) with restriction to (i)V/(i − 1)V × (i)V/(i − 1)V yields a
homomorphism of FG-modules

Mi → Bil((i)V/(i− 1)V ), (10.7)

whose kernel is precisely Li,i+1. This yields a monomorphism of FG-modules

Mi ∩ S/(Li,i+1 ∩ S) → Bil((i)V/(i− 1)V ). (10.8)

By restricting to

Qi
2 ×Qi

2, Q
i
2 ×Qi

4, ..., Q
i
2 ×Qi

2si

we get a homomorphism of FG-modules

Mi ∩ S/(Li,i+1 ∩ S) → ⊕
1≤k≤si

Bil(Qi
2, Q

i
2k). (10.9)

We shall show below that (10.9) is in fact an isomorphism.
Let 1 ≤ i < j ≤ t. Post-composing (10.6) with restriction to (i)V/(i − 1)V ×

(j)V/(i−1)V and (j)V/(i−1)V ×(i)V/(i−1)V yields a homomorphism of FG-modules

Li,j → Bil((i)V/(i− 1)V, (j)V/(i− 1)V )⊕Bil((j)V/(i− 1)V, (i)V/(i− 1)V ). (10.10)

By the very nature of Li,j this yields a homomorphism of FG-modules

Li,j → Bil((i)V/(i−1)V, (j)V/(j−1)V )⊕Bil((j)V/(j−1)V, (i)V/(i−1)V ), (10.11)

whose kernel is precisely Li,j+1. This yields a monomorphism of FG-modules

Li,j∩S/(Li,j+1∩S)→Bil((i)V/(i−1)V, (j)V/(j−1)V )⊕Bil((j)V/(j−1)V, (i)V/(i−1)V ).
(10.12)

By restricting to

Qi
2 ×Qj

2, Q
i
2 ×Qj

4, ..., Q
i
2 ×Qj

2sj

and

Qj
2 ×Qi

2, Q
j
2 ×Qi

4, ..., Q
j
2 ×Qi

2si
.

we get a homomorphism of FG-modules

Li,j ∩ S/(Li,j+1 ∩ S) → ⊕
1≤l≤sj

Bil(Qi
2, Q

j
2l)

⊕
⊕

1≤k≤si

Bil(Qj
2, Q

i
2k). (10.13)
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We shall show below that (10.13) is in fact an isomorphism.
Theorem 10.18. G[∞V ]/(G[∞V ] ∩ G[V/Rad(V )]) is an FG-module of dimen-

sion

dimG[∞V ]/(G[∞V ] ∩G[V/Rad(V )]) = dim (V/∞V )(m1 + · · · + mt), (10.14)

so the FG-module G[∞V ] has dimension dim (V/∞V )(m1 + · · · + mt).
The irreducible constituents of G[∞V ]/(G[∞V ]∩G[V/Rad(V )]) as an FG-module

are obtained as follows. We start with the series for S ∼=FG G[∞V ]/(G[∞V ] ∩
G[V/Rad(V )]) produced after Definition 10.17 and then decompose each factor by
means of the maps (10.9) and (10.13), both of which are isomorphisms.

Each summand in (10.13) is an irreducible FG-module, while the summands in
(10.9) has the constituents indicated in Theorem 10.13. More precisely, we have the
following situation.

(1) If 1 ≤ i �= j ≤ t and 1 ≤ l ≤ sj then the composition factor Bil(Qi
2, Q

j
2l) of

G[∞V ]/G[∞V ] ∩G[V/Rad(V )] is FG-irreducible,

G[Bil(Qi
2, Q

j
2l)] ⊇ N � Π

k �=i,j
Ek,

where

G/(N � Π
k �=i,j

Ek) ∼= Ei ×Ej ∼= GLmi(F ) × GLmj (F )

acts on

Bil(Qi
2, Q

j
2l) ∼= Mmi,mj (F )

by congruence

(X,Y ) ·A = XAY ′, X ∈ GLmi(F ), A ∈ Mmi,mj (F ), Y ∈ GLmj (F ).

(2) If 1 ≤ i ≤ t and 1 ≤ k ≤ si then the factor Bil(Qi
2, Q

i
2k) of the aforementioned

series G[∞V ]/(G[∞V ] ∩G[V/Rad(V )]) possesses the following properties.

G[Bil(Qi
2, Q

i
2k)] ⊇ N � Π

l �=i
El,

where

G/(N � Π
l �=i

El) ∼= Ei ∼= GLmi(F )

acts on

Bil(Qi
2, Q

i
2k) ∼= Mmi(F )

by congruence

X · A = XAX ′, X ∈ GLmi(F ), A ∈ Mmi(F ).
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The irreducible constituents of Bil(Qi
2, Q

i
2k) are therefore as indicated in Theorem

10.13.
Proof. We first establish the inequality

dimG[∞V ]/(G[∞V ] ∩G[V/Rad(V )]) ≥ (dimV/∞V )(m1 + · · · + mt). (10.15)

Recall the F -linear monomorphism (10.4). We easily see that a necessary and suffi-
cient condition for f ∈ HomF (V †

odd, V∞) to be in its image is that the vectors ei,p2k ,
1 ≤ i ≤ t, 1 ≤ p ≤ mi, 1 ≤ k ≤ si remain ϕ-orthogonal under f + 1. This yields a
linear system of

(s1m1 + · · · + stmt)2

equations in

(s1m1 + · · · + stmt)((s1 + 1)m1 + · · · + (st + 1)mt)

variables. Thus

dimG[∞V ] ≥ (s1m1 + · · · + stmt)(m1 + · · · + mt) = (dim V/∞V )(m1 + · · · + mt).
(10.16)

But from Lemma 10.10 we know that

dimG[∞V ] ∩G[V/Rad(V )] = dim HomF (V/∞V ,Rad(V )). (10.17)

By combining (10.16) and (10.17) we obtain (10.15).
We next explicitly describe the linear system governing the image of (10.4). Let

f ∈ HomF (V †
odd, V∞) and write

f(ei,p2k ) =
∑

1≤j≤t

∑
1≤q≤mi

∑
0≤l≤si

i,jX
p,q
2k,2l+1e

j,q
2l+1, (10.18)

where i,jX
p,q
2k,2l+1 ∈ F . Then f = (g − 1)|V †

odd
for some g ∈ G[∞V ] if and only if for

1 ≤ i, j ≤ t, 1 ≤ k ≤ si, 1 ≤ l ≤ sj, 1 ≤ p ≤ mi and 1 ≤ q ≤ mj we have

0 = 〈(f + 1)(ei,p2k ), (f + 1)(ej,q2l )〉 = i,jX
p,q
2k,2l+1 + j,iX

q,p
2l,2k−1. (10.19)

We next utilize (10.18) and (10.19) to show that equality prevails in (10.15), and
to infer from it that (10.9) and (10.13) are isomorphisms.

Suppose first that 1 ≤ i ≤ t and φ ∈ Bil((i)V/(i − 1)V ) belongs to the image
of (10.8). From the very definition of S we see that φ is the image under (10.7) of
ϕ̂g ∈ Mi for some g ∈ G[∞V ]. For 1 ≤ k, l ≤ si let iA2k,2l ∈ Mmi(F ) denote the
Gram matrix of φ|Qi

2k×Qi
2l

relative to the bases of Qi
2k and Qi

2l described in Theorem
6.15. For 1 ≤ p, q ≤ mi let iA

p,q
2k,2l denote the (p, q)-entry of iA2k,2l. Then

iA
p,q
2k,2l = φ(ei,p2k + (i− 1)V, ei,q2l + (i− 1)V ))

= ϕ̂g(e
i,p
2k + ∞V , ei,q2l + ∞V )

= ϕg(e
i,p
2k , e

i,q
2l )

= ϕ((g − 1)ei,p2k , e
i,q
2l ) = 〈(g − 1)ei,p2k , e

i,q
2l 〉.

(10.20)
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Let f = (g − 1)|V †
odd

and let (10.18) be the representation of f relative to our chosen

basis of V †
odd. Then (10.18) and (10.20) yield

iA
p,q
2k,2l = 〈(g − 1)ei,p2k , e

j,q
2l 〉 = 〈f(ei,p2k ), ej,q2l 〉 = i,iX

p,q
2k,2l+1. (10.21)

Applying (10.21) and (10.19), we see that, if k > 1 then

iA
p,q
2k,2l = i,iX

p,q
2k,2l+1 = −i,iX

q,p
2l,2k−1 = −iA

q,p
2l,2k−2.

Therefore, if k > 1 then

iA2k,2l = − [iA2l,2k−2]′ . (10.22)

But from Theorem 6.15 we know (i)V/(i−1)V is the direct sum of its FG-submodules
Qi

2k, so it follows from (10.22) that φ is completely determined by its restrictions to

Qi
2 ×Qi

2, Q
i
2 ×Qi

4, ..., Q
i
2 ×Qi

2si
.

Since (10.8) is a monomorphism, it follows from above that (10.9) is also a monomor-
phism.

Suppose next that 1 ≤ i < j ≤ t and (φi, φj) ∈ Bil((i)V/(i − 1)V, (j)V/(j −
1)V ) ⊕ Bil((j)V/(j − 1)V, (i)V/(i − 1)V ) belongs to the image of (10.12). From the
very definition of S we see that (φ1, φ2) is the image under (10.11) of ϕ̂g ∈ Mi

for some g ∈ G[∞V ]. For 1 ≤ k ≤ si and 1 ≤ l ≤ sj , let i,jA2k,2l ∈ Mmi,mj (F )
and j,iA2l,2k ∈ Mmj,mi(F ) denote the Gram matrices of φ1|Qi

2k×Qj
2l

and φ2|Qj
2l×Qi

2k

relative to the bases of Qi
2k and Qi

2l described in Theorem 6.15. Reasoning as above,
we deduce that, if k > 1 then

i,jA2k,2l = − [j,iA2l,2k−2]′ .

As above, this implies that the pair (φ1, φ2) is completely determined by the restric-
tions of φ1 to

Qi
2 ×Qj

2, Q
i
2 ×Qj

4, ..., Q
i
2 ×Qj

2sj

and restrictions of φ2 to

Qj
2 ×Qi

2, Q
j
2 ×Qi

4, ..., Q
j
2 ×Qi

2si
.

Since (10.12) is a monomorphism, it follows from above that (10.13) is also a monomor-
phism.

By collecting all monomorphisms (10.9) and (10.13), and applying them to the
series for S produced after Definition 10.17, we obtain the inequality

dimS ≤
∑

1≤i≤t

sim
2
i +

∑
1≤i�=j≤t

sjmimj + simjmi,

that is

dimS ≤ (s1m1 + · · ·+ stmt)(m1 + · · ·+mt) = (dim V/∞V )(m1 + · · ·+mt). (10.23)

By combining the inequalities (10.15) and (10.23) we deduce the equality (10.14) and
the fact that all maps (10.9) and (10.13) are isomorphisms. The remaining assertions
of the theorem are now consequence of Theorem 6.15.
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10.5. Dimension of G[∞V/V∞]∩G[V∞]/G[∞V ]. Recall the F -vector space de-
composition V = Vodd ⊕ (Veven ⊕ Vndeg) ⊕ V †

odd, and consider a basis of V formed by
putting together, one after another, bases of the 3 summands in the above decompo-
sition. We shall identify each element of G[V∞] ∩G[∞V/V∞] with its matrix. The
Gram matrix A of ϕ has the form

A =


 0 0 A1

0 A2 0
A3 0 0


 .

By Lemma 3.1 if X ∈ G[V∞] ∩G[∞V/V∞] then

X =


 1 Y1 Z

0 1 Y2

0 0 1


 .

The equation X ′AX = A defining G translates into

Y ′
1A1 + A2Y2 = 0, (10.24)

Y ′
2A2 + A3Y1 = 0, (10.25)

Z ′A1 + A3Z + Y ′
2A2Y2 = 0. (10.26)

By Lemma 3.2 the conditions for X to belong to G[∞V ] are Y1 = 0, Y2 = 0 and
(10.26).

Lemma 10.19. The group G[V∞] ∩G[∞V/V∞]/G[∞V ] is isomorphic to the F -
vector space Y of all pairs (Y1, Y2) satisfying (10.24) and (10.25).

Proof. Using the above notation we define the map γ : G[V∞] ∩G[∞V/V∞] → Y
given by X �→ (Y1, Y2). One easily verify that γ is a group homomorphism with
kernel G[∞V ]. It remains to show that γ is surjective. Consider the linear map δ :
HomF (V †

odd, V∞) → EndF (V †
odd), which in matrix terms is given by Z �→ Z ′A1 +A3Z.

By what we mentioned above, the kernel of δ is isomorphic to G[∞V ], which by
Theorem 10.18 has dimension dim (V †

odd)× (m1 + · · ·+mt). It follows that the image
of δ has dimension

dim (V †
odd) × dim (V∞) − dim (V †

odd) × (m1 + · · · + mt)

and this equals

dim (V †
odd)×[dim (V∞)−(m1+· · ·+mt)] = dim (V †

odd)×dim (V †
odd) = dim EndF (V †

odd).

Thus δ is surjective, whence γ must be surjective as well.
Proposition 10.20. The F -vector space G[V∞] ∩G[∞V/V∞]/G[∞V ] has di-

mension equal to dim (Veven ⊕ Vndeg) × (m1 + · · · + mt).
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Proof. By making use to Lemma 10.19 one verifies by direct computation that
any orthogonal direct decomposition of Veven⊕Vndeg resp. Vodd yields a corresponding
direct product decomposition of F -vector space G[V∞] ∩G[∞V/V∞]/G[∞V ]. Hence
we are reduced to prove this result when both bilinear spaces Veven ⊕ Vndeg and Vodd

are indecomposable. Thus Vodd has a basis e1, ..., e2s+1 relative to which the Gram
matrix of ϕ is equal to J2s+1(0) and there are two cases to be considered.

Case I: Veven = (0) (there is no need to assume that Vndeg is indecomposable).
Let f1, ..., fn be a basis of Vndeg and let g ∈ GL(V ). Suppose that

ge1 = e1, ge2 = e2 + u2 + v2, ge3 = e3, ge4 = e4 + u4 + v4, ...,

g2s = e2s + u2s + v2s, ge2s+1 = e2s+1

and that

gf1 = f1 + a1,1e1 + a1,3e3 + · · · + a1,2s+1e2s+1, ...,

gfn = fn + an,1e1 + an,3e3 + · · · + an,2s+1e2s+1,

for some aij ∈ F , u2k ∈ Vndeg and v2l ∈ V∞.
We claim that given any choice of a1,1, ..., an,1 we can find u2k ∈ Vndeg, v2l ∈ V∞

and all other aij ∈ F such that g ∈ G[V∞] ∩G[∞V/V∞], and, moreover, gG[∞V ] will
be unique.

It suffices to find u2k ∈ Vndeg and all other aij ∈ F so that ge2, ..., ge2s re-
main orthogonal to gf1, ..., gfn, and show that the choices for these are unique.
Indeed, the proof of Lemma 10.19 explains why the v2l will then exist to form
g ∈ G[V∞] ∩G[∞V/V∞], and it is clear that gG[∞V ] will then be unique.

In order to find the unique u2k ∈ Vndeg and aij ∈ F , j > 1, note first that
ϕ(ge2, gfl) = 0 translates into ϕ(u2, fl) = −al1, 1 ≤ l ≤ n. As the restriction of ϕ to
Vndeg is non-degenerate, u2 exists and is unique. Secondly ϕ(gfl, ge2) = 0, translates
into al3 = −ϕ(fl, u2), so all al3, 1 ≤ l ≤ n, exist and are unique. We may now repeat
this procedure to determine u4 and then all al5 in a unique manner, etc.

Case II: Vndeg = (0) and Veven has a basis f1, f2, ..., f2n−1, f2n relative to which
the matrix of ϕ is equal to J2n(0).

We first consider a family of 2n 1-parameter subgroups of G[V∞] ∩G[∞V/V∞]. It
will be obvious from the definition that non-identity members of different 1-parameter
subgroups are linearly independent modulo G[∞V ]. Our family is naturally divided
into two subfamilies, say γ and δ, each of them consisting of n 1-parameter subgroups.
The γ family consists of γ1,a, γ3,b, ..., γ2n−1,z ∈ G[V∞] ∩G[∞V/V∞], where a, b, ..., z ∈
F , all of which fix R∞(Veven) = (f2, ..., f2n) pointwise, and the δ family consists
of δ2n,a, γ2n−2,b, ..., γ2,z ∈ G[V∞] ∩G[∞V/V∞], where a, b, ..., z ∈ F , all of which fix
L∞(Veven) = (f1, ..., f2n−1). As elements of G[V∞] ∩G[∞V/V∞] they all fix V∞ =
(e1, e3, ..., e2s+1) pointwise. In the γ family we have

γ1,af1 = f1 + ae1, γ1,ae2 = e2 − af2, γ1,af3 = f3 + ae3, γ1,ae4 = e4 − af4, ...
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γ3,af1 = f1, γ3,af3 = f3 +ae1, γ3,ae2 = e2−af4, γ3,af5 = f5 +ae3, γ3,ae4 = e4−af6, ...

with the next γi,a similarly defined until

γ2n−1,af1 = f1, ..., γ2n−1,af2n−3 = f2n−3, γ2n−1,af2n−1 = f2n−1 + ae1,

and

γ2n−1,ae2 = e2 − af2n, γ2n−1,ae4 = e4, ..., γ2n−1,ae2s = e2s.

In the δ family the first member is defined by

δ2n,af2n = f2n + ae2s+1, γ2n,ae2s = e2s − af2n−1,

and

δ2n,af2n−2 = f2n−2 + ae2s−1, γ2n,ae2s−2 = e2s−2 − af2n−3, ...

the second member by

δ2n−2,af2n = f2n, δ2n−2,af2n−2 = f2n−2 + ae2s+1, γ2n−2,ae2s = e2s − af2n−3,

and

δ2n−2,af2n−4 = f2n−4 + ae2s−1, γ2n−2,ae2s−2 = e2s−2 − af2n−5, ...,

with the next δi,a similarly defined until

δ2,af2n = f2n, ..., δ2,af4 = f4, δ2,af2 = f2 + ae2s+1,

δ2,ae2s − af1, δ2,ae2s−2 = e2s−2, ..., δ2,ae2 = e2.

This explicit family of 2n 1-parameter subgroups of G[V∞] ∩G[∞V/V∞] show
that the dimension of G[V∞] ∩G[∞V/V∞]/G[∞V ] is at least 2n. We next show the
reverse inequality. For this purpose we consider the bilinear space W = L2(V )/L(V ),
whose bilinear form is the one naturally induced by ϕ (this works since L(V ) is
contained in radical of L2(V )). The canonical form-preserving linear map V → W
induces a canonical group homomorphism G(V ) → G(W ) = P . The latter maps
V∞ into W∞ and ∞V into ∞W , thereby yielding a group homomorphism, actually a
linear map from G[V∞] ∩G[∞V/V∞]/G[∞V ] into P [W∞]∩P [∞W/W∞]. One verifies
that the kernel of this map is generated by the classes modulo G[∞V ] of γ2n−1,a and
δ2,b as a, b run through F , so it has dimension 2. Applying this procedure repeatedly
until dimWodd = 1 or Weven = 0 -in which cases our result is obvious- it follows that
dimG[V∞] ∩G[∞V/V∞] ≤ 2n, as required.

As a corollary of Theorem 10.18 and Proposition 10.20 we finally obtain
Theorem 10.21. dimG[V∞] ∩G[∞V/V∞] = dim (V/V∞) × (m1 + · · · + mt).
We know from Lemma 10.2 that G[V∞] ∩G[∞V/V∞] is a nilpotent group of class

≤ 2. The following result describes the exact nilpotency class. The proof, which will
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be omitted, consists of a case by case analysis, all of which is direct consequence of the
preceding material. We make however one clarifying remark: if Vodd �= Rad(V ) and
Veven �= (0) then the elements γ1,a and δ2,b of G[V∞] ∩G[∞V/V∞] do not commute
provided a, b ∈ F are non-zero.

Lemma 10.22. (a) If Vodd = (0) or V = Vodd then G[V∞] ∩G[∞V/V∞] is trivial.
(b) If (Vodd �= (0) and V �= Vodd) and [(Vodd = Rad(V )) or (Veven = (0) and

Vodd has at most one indecomposable block of size ≥ 3 and dimVndeg = 1)] then
G[V∞] ∩G[∞V/V∞] is non-trivial and abelian.

(c) In all other cases G[V∞] ∩G[∞V/V∞] is non-abelian.

11. Decomposing G(V ) in terms of G(Vodd), G(Veven) and G(Vndeg). The
next result summarizes what we know about the G(Vodd). A notable fact is that even
though Vodd is far from being uniquely determined by V , the image of the restriction
group homomorphism G(Vodd) → GL(V∞) is the same for all choices of Vodd, as it
coincides with the image of G → GL(V∞).

Theorem 11.1. We have

G(Vodd) = G[∞V ] � G(Vodd) ∩G{V †
odd} = G[∞V ] � (U � E), (11.1)

where the action of E ∼= Π
1≤i≤t

GLmi(F ) on the unipotent group U , and the action

of U � E on the abelian unipotent group G[∞V ] possess the properties previously
described in the paper.

Moreover, the restriction maps G(Vodd) → GL(V∞) and G → GL(V∞) have
exactly the same image, say H. Indeed, both maps restricted to U � E yield the
isomorphism U � E → H, while both maps have split kernels, respectively equal to
G[∞V ] and G[V∞]. Thus H is isomorphic to

G(Vodd)/G[∞V ] ∼= U � E ∼= G/G[V∞].

Proof. Applying Lemma 3.2 to the decomposition (7.2) with V = Vodd and making
use of (7.1) we get (11.1). Again by Lemma 3.2, the restriction map G(Vodd) →
GL(V∞) has G[∞V ] in its kernel. Let H denote its image. By Lemma 3.1 G[V∞] ∩
G(Vodd) ∩G{V †

odd} =< 1 >, whence U � E → H is an isomorphism. It follows from
(7.2) that the image of G → GL(V∞) coincides with the image of U � E → GL(V∞),
that is H . This completes the proof.

Next we produce further decompositions for G.
Theorem 11.2. We have the following decompositions for G(V ).

G(V ) = (G[∞V /V∞] ∩G[V∞])(G(Vodd) ×G(Veven) ×G(Vndeg)),

where the intersection of G(Vodd) × G(Veven) × G(Vndeg) with the normal subgroup
G[∞V /V∞] ∩G[V∞] of G(V ) is the normal subgroup G[∞V ] of G(V );

G(V ) = G[∞V /V∞] ∩G[V∞] � ((G(Vodd) ∩G{V †
odd}) ×G(Veven) ×G(Vndeg)),
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where G(Vodd)/G[∞V ] ∼= G(Vodd) ∩G{V †
odd};

G(V ) = G[V∞]G(Vodd),

where G[V∞] ∩G(Vodd) = G[∞V ];

G = G[V∞]G[∞V /V∞],

where G[V∞]∩G[∞V /V∞] is a unipotent normal subgroup of G with nilpotency class
≤ 2.

Proof. The first three decompositions follow from Theorems 7.1 and 11.1, while
the fourth follows from the third.

Finally we consider the special but interesting case when V = Vodd is homogenous,
namely when V = Vodd is the direct sum of m Gabriel blocks of equal size 2s + 1.
The isomorphism type of G is fully revealed in this case.

Theorem 11.3. Suppose V = Vodd is the direct sum of m Gabriel blocks of size
2s + 1. Then

G ∼= ( Π
1≤k≤s

Mm(F )) � GLm(F ),

where GLm(F ) acts diagonally on Π
1≤k≤s

Mm(F ) by congruence.

Internally, G[V∞] has a natural structure of FG-module of dimension sm2 over
F . As a module over GLm(F ) ∼= G/G[V∞], G[V∞] is isomorphic to Π

1≤k≤s
Mm(F ),

upon which GLm(F ) acts diagonally by congruence.
Proof. Observe first of all that N = G[V∞] = G[∞V ], so G = G[∞V ] � E, where

E ∼= GLm(F ) and the action of E on G[∞V ] has been determined. More precisely, as
the case s = 0 is obvious, we may assume that s ≥ 1. Since t = 1 and Rad(V ) = 0,
Theorem 10.18 yields

G[∞V ] = G[∞V ] ∩G[V/Rad(V )] ∼= S ∼= ⊕
1≤k≤s

Bil(Q1
2, Q

1
2k),

and the indicated action of E ∼= Mm(F ) on ⊕
1≤k≤s

Bil(Q1
2, Q

1
2k) ∼= Π

1≤k≤s
Mm(F ).

12. Inductive approach. It is possible to extract useful information on G by
studying the canonical group homomorphism

G(V ) → G(L2(V )/L1(V )).

Here the bilinear space L2(V )/L1(V ) can be obtained from V in a straightforward
manner: its non-degenerate parts are equivalent, and all Gabriel blocks of V decrease
in size by 2 when passing from V to L2(V )/L1(V ), except for those of size ≤ 2 which
disappear. The above map is very likely to be surjective (we have checked this in a
few cases), so repeated application of it would yield G as constructed from G(Vndeg)
and the various kernels, all of which respond to the same pattern.

This sort of approach seems to be applicable to G(Vndeg), once it is already
decomposed as in (9.1). There is a canonical G-invariant filtration for Vndeg and one
produces from it a non-degenerate bilinear space as a section of Vndeg. Special cases
have revealed the associated group homomorphism to be surjective as well.
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