Global bifurcation and nodal solutions for homogeneous Kirchhoff type equations

Fang Liu¹, Hua Luo² and Guowei Dai*

¹School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, PR China
²School of Economics and Finance, Shanghai International Studies University, Shanghai, 201620, PR China

Received 20 December 2019, appeared 6 May 2020
Communicated by Maria Alessandra Ragusa

Abstract. In this paper, we shall study unilateral global bifurcation phenomenon for the following homogeneous Kirchhoff type problem

\[- \left(\int_0^1 |u'|^2 \, dx \right) u'' = \lambda u^3 + h(x, u, \lambda) \quad \text{in} \ (0, 1),
\]

\[u(0) = u(1) = 0.\]

As application of bifurcation result, we shall determine the interval of \(\lambda\) in which there exist nodal solutions for the following homogeneous Kirchhoff type problem

\[- \left(\int_0^1 |u'|^2 \, dx \right) u'' = \lambda f(x, u) \quad \text{in} \ (0, 1),
\]

\[u(0) = u(1) = 0,\]

where \(f\) is asymptotically cubic at zero and infinity. To do this, we also establish a complete characterization of the spectrum of a homogeneous nonlocal eigenvalue problem.

Keywords: bifurcation, spectrum, nonlocal problem, nodal solution, regularity results.

2020 Mathematics Subject Classification: 34C23, 47J10, 34C10.

1 Introduction

Consider the following problem

\[- \left(\int_0^1 |u'|^2 \, dx \right) u'' = \lambda u^3 + h(x, u, \lambda) \quad \text{in} \ (0, 1),
\]

\[u(0) = u(1) = 0,\]

(1.1)

where \(\lambda\) is a nonnegative parameter and \(h : (0, 1) \times \mathbb{R}^2 \to \mathbb{R}\) is a continuous function satisfying

\[\lim_{s \to 0} \frac{h(x, s, \lambda)}{s^3} = 0\]

(1.2)

*Corresponding author. Email: daiguowei@dlut.edu.cn
uniformly for all \(x \in (0, 1) \) and \(\lambda \) on bounded sets.

The problem (1.1) is related to the stationary problem of a model introduced by Kirchhoff in 1883 to describe the transversal oscillations of a stretched string [16]. Some important and interesting results can be found, for example, in [1, 4, 12, 13, 15, 19, 25]. Recently, there are many mathematicians studying the problem (1.1), see [5, 6, 8, 17, 20, 21, 22, 24, 26] and the references therein. A distinguishing feature of problem (1.1) is that the first equation contains a nonlocal coefficient \(\int_0^1 |u'|^2 \, dx \), and hence the equation is no longer a pointwise identity, which raises some essential difficulties to the study of this kind of problems. In particular, the bifurcation theory of [11, 23] does not work on it.

Based on Theorem 1.1, we study the existence of nodal solutions for the following problem

\[
\begin{align*}
- \left(\int_0^1 |u'|^2 \, dx \right) u'' &= \lambda f(x, u) \quad \text{in } (0, 1), \\
\ u(0) &= u(1) = 0.
\end{align*}
\]
We assume that f satisfies the following conditions

(f1) $f : (0, 1) \times \mathbb{R} \to \mathbb{R}$ is a continuous function such that $f(x, s)s > 0$ for all $x \in (0, 1)$ and any $s \neq 0$.

(f2) there exist $f_0, f_\infty \in (0, +\infty)$ such that

$$\lim_{s \to 0^+} \frac{f(x, s)}{s^3} = f_0, \quad \lim_{s \to +\infty} \frac{f(x, s)}{s^3} = f_\infty$$

uniformly with respect to all $x \in (0, 1)$.

The last main theorem of this paper is the following result.

Theorem 1.3. Assume that f satisfies (f1)–(f2). Then the pair $(\mu_k / f_0, 0)$ is a bifurcation point of (1.5) and there are two distinct unbounded continua in $\mathbb{R} \times H^1_0(0, 1), \mathcal{C}^{-}_k$ and \mathcal{C}^{+}_k, emanating from $(\mu_k / f_0, 0)$, such that $\mathcal{C}^{+}_k \subseteq \{ (\mu_k / f_0, 0) \} \cup \Phi_k^{\nu}$ and links $(\mu_k / f_0, 0)$ to $(\mu_k / f_\infty, \infty)$.

The rest of this paper is arranged as follows. In Section 2, we establish the spectrum of problem (1.4). In Section 3 and 4, we give the proofs of Theorem 1.1 and 1.3, respectively.

2 Spectrum of (1.4)

Let X be the usual Sobolev space $H^1_0(0, 1)$ with the norm $\|u\| = \left(\int_0^1 |u'|^2 \, dx \right)^{1/2}$. For any $\alpha \in (0, 1]$, we use $C^\alpha[0, 1]$ to denote all the real functions such that

$$\|u\|_\alpha := \sup_{x, y \in [0,1], x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} < +\infty.$$

Firstly, we have the following regularity result.

Proposition 2.1. Any weak solution $u \in X$ of problem (1.4) is also a classical solution, i.e., $u \in C^2[0, 1]$ satisfying (1.4).

Proof. Let u be a nontrivial weak solution of problem (1.4) and

$$f(x) = \frac{\lambda |u(x)|^pu(x)}{\|u\|^p}.$$

Note that

$$H^1_0(0, 1) = \{ u \in AC[0, 1] : u' \in L^2(0, 1) \text{ and } u(0) = u(1) = 0 \}.$$

Then it is obvious that $f \in L^2(0, 1)$, in fact continuous by the compact embedding $X \hookrightarrow C^{1/2}[0, 1]$. According to the definition of weak solution, we have

$$-\left(\int_0^1 |u'|^2 \, dx \right)^{\frac{p}{2}} u'' = \lambda |u|^pu$$

in the sense of distribution. It follows that

$$u'(x) = u'(0) - \int_0^x f(t) \, dt.$$
Thus, \(u(x) = \int_0^x u'(t) \, dt. \)

So, we have that
\[
 u(x) = \int_0^x \left(u'(0) - \int_0^\tau f(\tau) \, d\tau \right) \, dt = u'(0) x - \int_0^x \int_0^\tau f(\tau) \, d\tau \, dt.
\]

Then, in view of \(f \in C[0,1] \), we get that \(u \in C^2[0,1] \) and satisfies (1.4).

Lemma 2.2. If \((\lambda, u)\) is a solution of (1.4) and \(u \) has a double zero, then \(u \equiv 0 \).

Proof. Let \(u \) be a solution of (1.4) and \(x^* \in [0,1] \) be a double zero. If \(\|u\| = 0 \), the conclusion is obvious. Next, we assume that \(\|u\| \neq 0 \). We note that
\[
 u(x) = -\frac{\lambda}{\|u\|^p} \int_{x^*}^x \int_{x^*}^s |u|^p u \, ds \, d\tau.
\]

Firstly, we consider \(x \in [0,x^*] \). Then
\[
 |u(x)| = \left| -\frac{\lambda}{\|u\|^p} \int_{x^*}^x \int_{x^*}^s |u|^p u \, ds \, d\tau \right| \leq \frac{\lambda}{\|u\|^p} \int_{x^*}^x \int_{x^*}^s |u|^p u \, ds \, d\tau
\]
\[
 = \frac{\lambda}{\|u\|^p} (x - x^*) \int_{x^*}^x |u|^p u \, d\tau
\]
\[
 \leq \frac{\lambda}{\|u\|^p} \int_{x^*}^x |u|^p+1 \, d\tau \leq \frac{\lambda \|u\|^{p+1}}{\|u\|^p} \int_{x^*}^x |u| \, d\tau \leq \lambda \int_{x^*}^x |u| \, d\tau.
\]

By the Gronwall–Bellman inequality [7, Lemma 2.2], we get \(u \equiv 0 \) on \([0,x^*]\). Similarly, we can get \(u \equiv 0 \) on \([x^*,1]\) and the proof is completed. \(\square \)

Lemma 2.3. Each nontrivial solution \((\lambda, u)\) of (1.4) has a finite number of zeros.

Proof. Suppose, on the contrary, that \(u \) has a sequence zeros \(x_n \). Since \([0,1]\) is compact, up to a subsequence, there exists \(x_0 \in [0,1] \) such that \(\lim_{n \to +\infty} x_n = x_0 \). By the continuity of \(u \), we have that \(u(x_0) = \lim_{n \to +\infty} u(x_n) = 0 \). So, we have that
\[
 u'(x_0) = \lim_{n \to +\infty} \frac{u(x_n) - u(x_0)}{x_n - x_0} = 0.
\]

Thus, \(x_0 \) is a double zero of \(u \). By Lemma 2.2, we get that \(u \equiv 0 \), which is a contradiction. \(\square \)

Let \(J \) be a strict sub-interval of \(I \). Let \(\lambda_1(J) \) denote the first eigenvalue
\[
 \left\{ \begin{array}{ll}
 - \left(\int_0^1 |u'|^2 \, dx \right)^{p/2} u'' = \lambda |u|^p u & \text{in } J, \\
 u(x) = 0 & \text{on } \partial J,
\end{array} \right.
\]

where \(p \in [0,2] \).

Lemma 2.4. \(\lambda_1(I) \) verifies the strict monotonicity property with respect to the domain \(I \), i.e. if \(J \) is a strict subinterval of \(I \), then \(\lambda_1(I) < \lambda_1(J) \).
Proof. Let \(\varphi_1 \) with \(\| \varphi_1 \| = 1 \) be the eigenfunction of (1.4) on \(I \) corresponding to \(\lambda_1(I) \), and denote by \(\tilde{\varphi}_1 \) the extension by zero on \(J \). Then we have that

\[
\frac{1}{\lambda_1(J)} = \int_J |\varphi_1|^{p+2} \, dx = \int_I |\tilde{\varphi}_1|^{p+2} \, dx < \sup_{u \in X, \|u\| = 1} \int_0^1 |u|^{p+2} \, dx = \frac{1}{\lambda_1(I)}.
\]

The last strict inequality holds from the fact that \(\tilde{\varphi}_1 \) vanishes in \(I \setminus J \) so cannot be an eigenfunction corresponding to the principal eigenvalue \(\lambda_1(I) \).

Proof of Theorem 1.2. Let \(\varphi_1 \) be a positive eigenfunction corresponding to \(\lambda_1(p) \). It follows from the symmetry of (1.4) and Theorem 3.1 of [9] (or Theorem 2.4 of [18]) that \(\varphi_1(x) = \varphi_1(1-x) \) for \(x \in [0,1] \), i.e. \(\varphi_1 \) is even with respect to \(1/2 \). For any \(k \geq 2 \), set

\[
\varphi_k(x) = \begin{cases}
\varphi_1(kx), & x \in [0, \frac{1}{k}], \\
-\varphi_1(kx-1), & x \in \left[\frac{1}{k}, \frac{2}{k} \right], \\
& \vdots \\
(-)^k \varphi_1(kx-k+1), & x \in \left[\frac{k-1}{k}, 1 \right].
\end{cases}
\]

Then \(\varphi_k \) is an eigenfunction of (1.4) associated with the eigenvalue \(\lambda_k(p) = k^{p+2} \lambda_1(p) \). Clearly, the continuity of \(\lambda_k(p) \) implies that \(\lambda_k(p) \) is continuous with respect to \(p \).

On the other hand, let \(u = u(x) \) be an eigenfunction of (1.4) associated with some eigenvalue \(\lambda_* > \lambda_1(p) \). According to Theorem 3.1 of [9], \(u \) changes sign in \((0,1) \). Lemmas 2.2 and 2.3 imply that \(u \in S_k \) for some \(k \geq 2 \). Without loss of generality, we may assume that \(u''(0) > 0 \). Let

\[
0 < \tau_1 < \tau_2 < \cdots < \tau_{k-1} < 1
\]

denote the zeros of \(u \) in \((0,1) \). Without loss of generality, we may assume that \(\tau_1 \leq 1/k \).

Applying Lemma 2.4 on \([0,1/k] \), we have that \(\lambda_* \geq \lambda_k \). By Lemma 2 of [2], there exist integers \(p \) and \(q \), \(1 \leq p \leq k-1 \), \(1 \leq q \leq k-1 \), such that

\[
\tau_p \leq \frac{1}{q+1} < \frac{1}{q} \leq \tau_{p+1}.
\]

Applying Lemma 2.4 on \([\tau_p, \tau_{p+1}] \), we have that \(\lambda_* \leq \lambda_k \). So we have that \(\lambda_* = \lambda_k \). Furthermore, if \(\tau_1 < 1/k \), we have that \(\lambda_* > \lambda_k \); if \(\tau_1 > 1/k \), we have that \(\lambda_* < \lambda_k \). Thus we have \(\tau_1 = 1/k \) and \(u = c_1 \varphi_k(x) \) for \(x \in [0,1/k] \). Similarly, we can obtain that \(\tau_i = i/k \) and \(u = c_i \varphi_k(x) \) for \(x \in [(i-1)/k, i/k] \), \(2 \leq i \leq k-1 \). Let us normalize \(u \) as \(u''(0) = \varphi_k'(0) \). It follows that \(c_1 = 1 \). Hence \(\varphi_k'(\frac{1}{k}) = c_2 \varphi_k'(\frac{1}{k}) \). So we have \(c_2 = 1 \). Similarly, one has \(c_i = 1 \) for all \(3 \leq i \leq k-1 \). Therefore, we have that \(u(x) = \varphi_k(x) \), \(x \in [0,1] \).

3 Global bifurcation

Consider the following auxiliary problem

\[
\begin{cases}
-\left(\int_0^1 |u'|^2 \, dx \right)^{p/2} u'' = f(x) & \text{in } (0,1), \\
u(0) = u(1) = 0
\end{cases}
\]

(3.1)

for any \(p \in [0,2] \) and a given \(f \in X^* \). We have shown in [9] that problem (3.1) has a unique weak solution. Let us denote by \(R_p(f) \) the unique weak solution of (3.1). Then \(R_p : X^* \to X \).
is a continuous operator. Since the embedding of \(X \hookrightarrow L^\infty(0,1) \) is compact, the restriction of \(R_p \) to \(L^1(0,1) \) is a completely continuous (i.e., continuous and compact) operator. From the obvious modification of Lemma 4.2 of [9], we can get the following compactness and continuity of the operator \(R_p \) with respect to \(p \) and \(f \).

Lemma 3.1. The operator \(R : [0,2] \times L^1(0,1) \rightarrow L^\infty(0,1) \) defined by \(R(p,f) = R_p(f) \) is completely continuous.

Now, we consider (1.4) again. Clearly, \(u \) is a weak solution of (1.4) if and only if \(u \in X \), \(\lambda \in [0, +\infty) \) satisfy

\[
 u = R_p(\lambda|u|^pu) = \lambda^{\frac{1}{p+1}} R_p(|u|^pu) := T^\lambda_p(u).
\]

For any \(u \in X \), we define

\[
 K_p(u) = |u|^pu.
\]

Then we see that \(K_p(u) \in L^1(0,1) \). We claim that \(K_p : X \hookrightarrow L^1(0,1) \) is continuous. Assume that \(u_n \rightarrow u \) in \(X \). Since embedding \(X \hookrightarrow C[0,1] \) is compact, we have \(u_n \rightarrow u \) in \(C[0,1] \). It follows that \(u_n(x) \rightarrow u(x) \) for any \(x \in [0,1] \). So, we have that \(K_p(u_n) \rightarrow K_p(u) \) in \(L^1(0,1) \).

Since \(R_p : L^1(0,1) \rightarrow X \) is a compact, we have that \(T^\lambda_p = \lambda^{\frac{1}{p+1}} R_p \circ K_p : X \rightarrow X \) is completely continuous. Thus the Leray–Schauder degree

\[
 \deg_X \left(I - T^\lambda_p, B_r(0), 0 \right)
\]

is well-defined for arbitrary \(r \)-ball \(B_r(0) \) and \(\lambda \neq \lambda_k(p) \). It is well known that

\[
 \deg_X \left(I - T^{\lambda_0}_p, B_r(0), 0 \right) = (-1)^\beta,
\]

where \(\beta \) is the number of eigenvalues of problem (1.4) with \(p = 0 \) less than \(\lambda \). As far as the general \(p \), we can compute it through the deformation along \(p \).

Proposition 3.2. Let \(r > 0 \) and \(\overline{p} \in [0,2] \). Then

\[
 \deg_X \left(I - T^{\lambda}_p, B_r(0), 0 \right) = \begin{cases}
 1, & \text{if } \lambda \in (0, \lambda_1(\overline{p})) \\
 (-1)^k, & \text{if } \lambda \in (\lambda_k(\overline{p}), \lambda_{k+1}(\overline{p}))
 \end{cases}
\]

Proof. If \(\lambda \in (0, \lambda_1(\overline{p})) \), the conclusion has done in [9]. So we only need to prove the case \(\lambda \in (\lambda_k(\overline{p}), \lambda_{k+1}(\overline{p})) \). Since \(p \to \lambda_k(p) \) is continuous, we can define a continuous function \(\chi : [0,2] \rightarrow \mathbb{R} \) such that \(\lambda_k(p) < \chi(p) < \lambda_{k+1}(p) \) and \(\lambda = \chi(\overline{p}) \). Set

\[
 d(p) = \deg_X \left(I - T^{\chi(p)}_p, B_r(0), 0 \right).
\]

We shall show that \(d(p) \) is constant in \([0,2]\).

Define \(S_p : L^\infty(0,1) \rightarrow X \) by \(S_p(u) = R_p(\chi(p)|u|^pu) \). We see that \(S_p(u) = \chi^{\frac{1}{p+1}}(p) R_p \circ K_p(u) \), where \(K_p(u) = |u|^pu \). By the definition of \(K_p \), we can easily verify that \(K_p : L^\infty(0,1) \rightarrow L^1(0,1) \) is continuous. Since \(R_p : L^1(0,1) \rightarrow X \) is a compact, we get that \(S_p : L^\infty(0,1) \rightarrow X \) is completely continuous. Also we have that \(T^{\chi(p)}_p = S_p \circ i \) where \(i : X \rightarrow L^\infty(0,1) \) is the usual inclusion. From Lemma 2.4 of [14], we obtain that

\[
 d(p) = \deg_{L^\infty} \left(I - i \circ S_p, \Omega_s, 0 \right) \quad \text{for } p \in [0,2],
\]
where Ω_s is any open bounded set in $L^\infty(0,1)$ containing 0. It is not difficult to verify that the operator $\varphi : [0,2] \times L^\infty(0,1) \to L^1(0,1)$ defined by $\varphi(p,u) = |u|^p u$ is continuous. This fact, the continuity of $\chi(p)$ and Lemma 3.1 imply that $(p,u) \mapsto R_p (\chi(p)|u|^p u) = (i \circ S_p)(u) : [0,2] \times L^\infty(0,1) \to L^\infty(0,1)$ is completely continuous. Since $\lambda_k(p) < \chi(p) < \lambda_{k+1}(p)$ for any $p \in [0,2]$, we have that $u - R_p (\chi(p)|u|^p u) \neq 0$ on $\partial \Omega_s$. The invariance of the Leray–Schauder degree under a compact homotopy follows that $d(p) \equiv \text{constant}$ for $p \in [0,2]$. So, $d(\overline{p}) = d(0) = (-1)^k$, as desired.

In particular, we have the following corollary.

Corollary 3.3. Let $r > 0$. Then

$$\deg_X \left(I - T_2^\lambda, B_r(0), 0 \right) = \begin{cases} 1, & \text{if } \lambda \in (0, \mu_1), \\ (-1)^k, & \text{if } \lambda \in (\mu_k, \mu_{k+1}), \end{cases}$$

where μ_k is the k-th eigenvalue of (1.3).

Clearly, the pair (λ, u) is a solution of (1.1) if and only if (λ, u) satisfies

$$u = R_2 (\lambda u^3 + h(x, u, \lambda)) : = G_\lambda(u).$$

It is easy to see that $G_\lambda : X \to X$ is completely continuous and $G_\lambda(0) = 0$, $\forall \lambda \in [0, +\infty)$. μ_k is the λ_k. Let X_0 be any complement to span $\{ \varphi_k \}$ in X.

Theorem 3.4. The pair $(\mu_k, 0)$ is a bifurcation point of (1.1). Moreover, there are two distinct continua in $\mathbb{R} \times X$, \mathcal{C}_k^+ and \mathcal{C}_k^-, consisting of the bifurcation branch \mathcal{C}_k emanating from $(\mu_k, 0)$, which contain $\{(\mu_k, 0)\}$ and each of them satisfies one of the following non-excluding alternatives:

1. it is unbounded in $\mathbb{R} \times X$;
2. it contains a pair $(\mu_j, 0)$ with $j \neq k$;
3. it contains a point $(\lambda, y) \in \mathbb{R} \times (X_0 \setminus \{0\})$.

Proof. We use the abstract bifurcation result of [10] to prove this theorem. An operator L defined on X is called homogeneous if $L(cu) = cL(u)$ for any $c \in \mathbb{R}$ and $u \in X$. It is not difficult to verify that $L(\lambda) := T_2^\lambda : X \to X$ is homogeneous and completely continuous. Let $\tilde{h}(x, u, \lambda) = \max_{0 \leq s \leq u} |h(x,s,\lambda)|$ for all $x \in (0,1)$ and λ on bounded sets, then \tilde{h} is nondecreasing with respect to u and

$$\lim_{u \to 0^+} \frac{\tilde{h}(x,u,\lambda)}{u^3} = 0. \tag{3.2}$$

Further it follows from (3.2) that

$$\frac{h(x, u, \lambda)}{|u|^3} \leq \frac{\tilde{h}(x,|u|,\lambda)}{|u|^3} \leq \frac{\tilde{h}(x,|u|_{\infty},\lambda)}{|u|_{\infty}^3} \to 0 \quad \text{as } |u| \to 0 \tag{3.3}$$

uniformly for $x \in (0,1)$ and λ on bounded sets. Let

$$H(\lambda, u) = G_\lambda(u) - L(\lambda)u.$$

By (3.3), we can easily verify that $H : \mathbb{R} \times X \to X$ is completely continuous with $H = o(|u|)$ near $u = 0$ uniformly on bounded λ intervals. Noting Corollary 3.3, the desired conclusions can be obtained by applying Theorem 1 of [10].
By an argument similar to that of Proposition 2.1, we can get the following regularity result.

Proposition 3.5. Any weak solution \(u \in X \) of problem (1.1) is also a classical solution, i.e., \(u \in C^2(0, 1) \cap C^1,\lambda(0, 1] \) satisfying (1.1) and \(u(0) = u(1) = 0 \).

Lemma 3.6. If \((\lambda, u)\) is a solution of (1.1) and \(u \) has a double zero, then \(u \equiv 0 \).

Proof. Let \(u \) be a solution of (1.1) and \(x^* \in [0, 1] \) be a double zero. If \(\|u\| = 0 \), the conclusion is done. Next, we assume that \(\|u\| \neq 0 \). We note that

\[
R \mid u(x) \mid \leq \int_{x_0}^{x} \left(\mid \lambda u^3 + h(x, u, \lambda) \mid \right) d\tau.
\]

In view of (1.2), for any \(\varepsilon > 0 \), there exists a constant \(\delta > 0 \) such that

\[
\mid h(x, s, \lambda) \mid \leq \varepsilon |s|
\]

uniformly with respect to all \(x \in (0, 1) \) and fixed \(\lambda \) when \(|s| \in [0, \delta] \). Hence,

\[
\mid u(x) \mid \leq \int_{x_0}^{x} \left(\mid \lambda \mid + \varepsilon + \max_{s \in [\delta, \|u\|_\infty]} \mid \frac{h(\tau, s, \lambda)}{s^3} \mid \right) |u(\tau)| d\tau.
\]

By the Gronwall–Bellman inequality [7], we get \(u \equiv 0 \) on \([0, x^*] \). Similarly, we can get \(u \equiv 0 \) on \([x^*, 1] \) and the proof is complete.

Proof of Theorem 1.1. Lemma 3.1 of [10] implies that there exists a bounded open neighborhood \(\mathcal{O}_k \) of \((\mu_k, 0)\) such that \(\mathcal{O}_k^\circ \subseteq \mathcal{O}_k \) or \(\mathcal{O}_k^\circ \subseteq \mathcal{O}_k^\circ \). Without loss of generality, we assume that \(\mathcal{O}_k^\circ \subseteq \mathcal{O}_k \).

Next, we show that \(\mathcal{O}_k^\circ \subseteq \mathcal{O}_k \). Suppose \(\mathcal{O}_k^\circ \not\subseteq \mathcal{O}_k \). Then there exists \((\mu, u) \in \mathcal{O}_k \cap (\mathbb{R} \times \partial \mathcal{S}_k)\) such that \((\mu, u) \neq (\mu_k, 0) \) and \((\lambda_n, u_n) \to (\mu, u) \) with \((\lambda_n, u_n) \in \mathcal{O}_k \subseteq \mathcal{O}_k \cap (\mathbb{R} \times \partial \mathcal{S}_k)\). Since \(u \in \partial \mathcal{S}_k \), by Lemma 3.6, \(u \equiv 0 \). Let \(v_n := u_n/\|u_n\| \), then \(v_n \) should be a solution of the following problem

\[
v = R_2 \left(\lambda_n v^3 + \frac{h(x, u_n, \lambda_n)}{\|u_n(x)\|^3} \right).
\]

By (3.3), (3.4) and the compactness of \(R_2 \) we obtain that for some convenient subsequence \(v_n \to v_0 \neq 0 \) as \(n \to +\infty \). Now \(v_0 \) verifies the equation

\[
-\int_0^1 |v'|^2 \, dxv'' = \mu v^3
\]

and \(\|v_0\| = 1 \). Hence \(\mu = \mu_j \), for some \(j \neq k \). Hence \(v_0 \in S_j \) which is an open set in \(X \), and as a consequence for some \(n \) large enough, \(u_n \in S_j \) and this is a contradiction. Thus, we have that

\[
\mathcal{O}_k^\circ \subseteq \mathcal{O}_k \subseteq (\mathcal{O}_k \cap (\mathbb{R} \times \partial \mathcal{S}_k)).
\]
Furthermore, by an argument similar to the above, we can easily show that $\mathcal{C}_k \cap (\mathbb{R} \times \{0\}) = \{(\mu_k, 0)\}$. So Theorem 1 of [10] implies that \mathcal{C}_k is unbounded.

We claim that both \mathcal{C}_k^+ and \mathcal{C}_k^- are unbounded. Introduce the following auxiliary problem

$$
\begin{cases}
- \left(\int_0^1 |u'|^2 \, dx \right) u'' = \lambda u^3 + \tilde{h}(x, u, \lambda) & \text{in } (0, 1), \\
u(0) = u(1) = 0,
\end{cases}
$$

where \tilde{h} is defined by

$$
\tilde{h}(x, u, \lambda) = \begin{cases}
h(x, u, \lambda), & \text{if } u'(0) > 0, \\
-h(x, -u, \lambda), & \text{if } u'(0) < 0.
\end{cases}
$$

The previous argument shows that an unbounded continuum $\tilde{\mathcal{C}}_k$ bifurcates from $(\mu_k, 0)$ and can be split into $\tilde{\mathcal{C}}_k^+$ and $\tilde{\mathcal{C}}_k^-$ with $\tilde{\mathcal{C}}_k^\nu$ connected, $\tilde{\mathcal{C}}_k^\nu \subseteq \{(\mu_k, 0)\} \cup (\mathbb{R} \times \mathcal{S}_k)$. It is easy to see that $\tilde{\mathcal{C}}_k^- = -\tilde{\mathcal{C}}_k^+$. It follows that both $\tilde{\mathcal{C}}_k^+$ and $\tilde{\mathcal{C}}_k^-$ are unbounded. It is clear that $\tilde{\mathcal{C}}_k^+ \subseteq \mathcal{C}_k^+$. Therefore \mathcal{C}_k^+ must be unbounded. A symmetric argument shows that \mathcal{C}_k^- is also unbounded.

\section{Nodal solutions}

In this section, we apply Theorem 1.1 to study the existence of nodal solutions for (1.5).

Proof of Theorem 1.3. Let $g : (0, 1) \times \mathbb{R} \to \mathbb{R}$ be a continuous function such that

$$f(x, s) = f_0 s^3 + g(x, s)$$

with

$$\lim_{s \to 0} \frac{g(x, s)}{s^3} = 0 \quad \text{uniformly with respect to all } x \in (0, 1). \quad (4.1)$$

From (4.1), we can see that λg satisfies the assumptions of (1.2). Now, using Theorem 1.1, we have that there are two distinct unbounded continua, \mathcal{C}_k^+ and \mathcal{C}_k^- emanating from $(\mu_k / f_0, 0)$, such that

$$\mathcal{C}_k^\nu \subseteq \{(\mu_k / f_0, 0)\} \cup \mathcal{S}_k^\nu.$$

It is sufficient to show that \mathcal{C}_k^ν joins $(\mu_k / f_0, 0)$ to $(\mu_k / f_\infty, 0)$. Let $(\zeta_n, u_n) \in \mathcal{C}_k^\nu$ where $u_n \neq 0$ satisfies $|\zeta_n| + \|u_n\| \to +\infty$. Proposition 5.1 of [8] implies that $(0, 0)$ is the only solution of (1.5) for $\lambda = 0$, we have $\mathcal{C}_k^\nu \cap (\{0\} \times X) = \emptyset$. It follows that $\zeta_n > 0$ for all $n \in \mathbb{N}$.

Next we show that u_n is one-signed in some interval $(\alpha, \beta) \subseteq (0, 1)$ with $\alpha < \beta$. Let

$$0 < \tau(1, n) < \tau(2, n) < \cdots < \tau(k-1, n) < 1$$

denote the zeros of u_n in $(0, 1)$. Let $\tau(0, n) = 0$ and $\tau(k, n) = 1$. Then, after taking a subsequence if necessary,

$$\lim_{n \to +\infty} \tau(l, n) = \tau(l, \infty), \quad l \in \{0, 1, \ldots, k\}.$$

We claim that there exists $l_0 \in \{0, 1, \ldots, k\}$ such that

$$\tau(l_0, \infty) < \tau(l_0 + 1, \infty).$$
Otherwise, we have that
\[1 = \Sigma_{i=0}^{k-1} (\tau(l+1,n) - \tau(l,n)) = \Sigma_{i=0}^{k-1} (\tau(l+1,\infty) - \tau(l,\infty)) = 0. \]
This is a contradiction. Let \((\alpha, \beta) \subset (\tau(l_0,\infty), \tau(l_0+1,\infty))\) with \(\alpha < \beta\). For all \(n\) sufficiently large, we have \((\alpha, \beta) \subset (\tau(l_0,n), \tau(l_0+1,n))\). So \(u_n\) does not change its sign in \((\alpha, \beta)\).

We claim that there exists a constant \(M\) such that \(\xi_n \in (0, M]\) for \(n \in \mathbb{N}\) large enough. On the contrary, we suppose that \(\lim_{n \to +\infty} \xi_n = +\infty\). Since \((\xi_n, u_n) \in C^\alpha_\eta\), it follows that
\[
\|u_n\| \to +\infty \quad \text{as} \quad n \to +\infty.
\]
Let \(h : (0,1) \times \mathbb{R} \to \mathbb{R}\) be a continuous function such that
\[
f(x,s) = f_\infty s^3 + h(x,s)
\]
with
\[
\lim_{|s| \to +\infty} \frac{h(x,s)}{s^3} = 0, \quad \lim_{|s| \to 0} \frac{h(x,s)}{s^3} = f_0 - f_\infty \quad \text{uniformly with respect to all} \quad x \in (0,1).
\]
Then \((\xi_n, u_n)\) satisfies
\[
u_n = R_2 \left(\xi_n f_\infty u_n^3 + h(x,u_n) \right).
\]
Dividing the above equation by \(\|u_n\|\) and letting \(\bar{u}_n = u_n / \|u_n\|\), we get that
\[
\bar{u}_n = R_2 \left(\xi_n f_\infty \bar{u}_n^3 + \frac{h(x,u_n)}{\|u_n\|^3} \right).
\]
Let
\[
\tilde{h}(x,u) = \max_{0 \leq |s| \leq u} |h(x,s)| \quad \text{for any} \quad x \in (0,1),
\]
then \(\tilde{h}\) is nondecreasing with respect to \(u\). Define
\[
\bar{h}(x,u) = \max_{u/2 \leq |s| \leq u} |h(x,s)| \quad \text{for any} \quad x \in (0,1).
\]
Then we can see that
\[
\lim_{u \to +\infty} \frac{\bar{h}(x,u)}{u^3} = 0 \quad \text{and} \quad \tilde{h}(x,u) \leq \bar{h} \left(x, \frac{u}{2} \right) + \bar{h}(x,u).
\]
It follows that
\[
\limsup_{u \to +\infty} \frac{\bar{h}(x,u)}{u^3} \leq \limsup_{u \to +\infty} \frac{\bar{h} \left(x, \frac{u}{2} \right)}{u^3} = \limsup_{u/2 \to +\infty} \bar{h} \left(x, \frac{u}{2} \right)^3.
\]
So we have
\[
\lim_{u \to +\infty} \frac{\hat{h}(x, u)}{u^3} = 0.
\]
(4.2)

Further it follows from (4.2) that
\[
\frac{h(x, u_n)}{\|u_n\|^3} \leq \frac{\hat{h}(x, |u_n|)}{\|u_n\|^3} \leq c \frac{\hat{h}(x, \|u_n\|)}{c^3 \|u_n\|^3} \to 0 \quad \text{as} \quad n \to +\infty
\]
uniformly for \(x \in (0, 1) \).

By the compactness of \(R_2 \) we obtain that
\[
-\|u\|^2 u'' = \mu f \infty u^3,
\]
where \(\overline{\mu} = \lim_{n \to +\infty} \mu_n \) and \(\overline{\mu} = \lim_{n \to +\infty} \mu_n \), again choosing a subsequence and relabeling it if necessary. It follows from \(\|\mu\| = \lim_{n \to +\infty} \|\mu_n\| \). Since \(\|\mu_n\| = 1 \), we obtain that \(\|\mu\| = 1 \). It is clear that \(\mu \in \mathcal{C}^\nu_k \). Theorem 1.2 of [3] shows that \(\mu = \mu_k / f_\infty \). Therefore, \(\mathcal{C} \) joins \((\mu_k / f_\infty, 0)\) to \((\mu_k / f_\infty, \infty)\). \(\square \)

From Theorem 1.3, we can easily get the following corollary.

Corollary 4.1. Assume that \(f \) satisfies (f1)–(f2). Then for
\[
\lambda \in \left(\frac{\mu_k}{f_0}, \frac{\mu_k}{f_\infty} \right) \cup \left(\frac{\mu_k}{f_\infty}, \frac{\mu_k}{f_0} \right),
\]
problem (1.5) possesses at least two solutions \(u^+_k \) and \(u^-_k \) such that \(u^+_k \) has exactly \(k - 1 \) simple zeros in \((0, 1) \) and is positive near 0, and \(u^-_k \) has exactly \(k - 1 \) simple zeros in \((0, 1) \) and is negative near 0.

Acknowledgements

The authors wish to express their thanks to the referee for his or her very careful reading of the paper, giving valuable comments and helpful suggestions. The second author is supported by NSF of Liaoning Province (No. 2019-MS-109). The third author is supported by NNSF of China (No. 11871129), the Fundamental Research Funds for the Central Universities (No. DUT20LK04) and Xinghai Youqing funds from Dalian University of Technology.

References

