The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Aldous, David J. Self-intersections of 1-dimensional random walks. Probab. Theory Relat. Fields 72 (1986), no. 4, 559-587. MR0847386 (88a:60125)
  2. Asselah, Amine. Large deviations estimates for self-intersection local times for simple random walk in $\Bbb Z\sp 3$. Probab. Theory Related Fields 141 (2008), no. 1-2, 19-45. MR2372964 (2009c:60261)
  3. Bunimovich, Leonid A. Deterministic walks in random environments. Microscopic chaos and transport in many-particle systems. Phys. D 187 (2004), no. 1-4, 20-29. MR2046689 (2005f:82110)
  4. Dembo, Amir; Zeitouni, Ofer. Large deviations techniques and applications. Corrected reprint of the second (1998) edition. Stochastic Modelling and Applied Probability, 38. Springer-Verlag, Berlin, 2010. xvi+396 pp. ISBN: 978-3-642-03310-0 MR2571413 (2011b:60094)
  5. Grimmett, Geoffrey R. Stochastic pin-ball. Random walks and discrete potential theory (Cortona, 1997), 205-213, Sympos. Math., XXXIX, Cambridge Univ. Press, Cambridge, 1999. MR1802432 (2002a:60158)
  6. Kosygina, Elena; Rezakhanlou, Fraydoun; Varadhan, S. R. S. Stochastic homogenization of Hamilton-Jacobi-Bellman equations. Comm. Pure Appl. Math. 59 (2006), no. 10, 1489-1521. MR2248897 (2009d:35017)
  7. Rassoul-Agha, Firas. Large deviations for random walks in a mixing random environment and other (non-Markov) random walks. Comm. Pure Appl. Math. 57 (2004), no. 9, 1178-1196. MR2059678 (2005b:60067)
  8. Rassoul-Agha, Firas; Seppäläinen, Timo. Process-level quenched large deviations for random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011), no. 1, 214-242. MR2779403 (2012a:60283)
  9. Rassoul-Agha, Firas; Seppäläinen, Timo; Yilmaz, Attila. Quenched free energy and large deviations for random walks in random potentials. Submitted
  10. Rezakhanlou, Fraydoun; Tarver, James E. Homogenization for stochastic Hamilton-Jacobi equations. Arch. Ration. Mech. Anal. 151 (2000), no. 4, 277-309. MR1756906 (2001f:35047)
  11. Rosenbluth, Jeffrey Quenched large deviations for multidimensional random walk in random environment: a variational formula. Ph.D. thesis, New York University. (2006) arXiv:0804.1444v1
  12. Shen, Lian. On ballistic diffusions in random environment. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), no. 5, 839-876. MR1997215 (2005d:60130)
  13. Steele, J. Michael. Probability theory and combinatorial optimization. CBMS-NSF Regional Conference Series in Applied Mathematics, 69. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. viii+159 pp. ISBN: 0-89871-380-3 MR1422018 (99d:60002)
  14. Sznitman, Alain-Sol. Brownian motion, obstacles and random media. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. xvi+353 pp. ISBN: 3-540-64554-3 MR1717054 (2001h:60147)
  15. Sznitman, Alain-Sol; Zerner, Martin. A law of large numbers for random walks in random environment. Ann. Probab. 27 (1999), no. 4, 1851-1869. MR1742891 (2001f:60116)
  16. Varadhan, S. R. S. Random walks in a random environment. Proc. Indian Acad. Sci. Math. Sci. 114 (2004), no. 4, 309-318. MR2067696 (2005h:60312)
  17. Yilmaz, Atilla. Large deviations for random walk in a space-time product environment. Ann. Probab. 37 (2009), no. 1, 189-205. MR2489163 (2010b:60278)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.