The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Blum, J.R. and Rosenblatt, M. (1959). On the structure of infinitely divisible distributions. Pacific J. Math., 9, 1-7. Math. Review 105729.
  2. Donoghue, W.F., Jr. (1969). Distributions and Fourier Transforms. New York: Academic Press. Math. Review number not available.
  3. Feller, W. (1971). An Introduction to Probability Theory and its Applications. Vol. II, 2nd Edition, New York: John Wiley & Sons. Math. Review 270403.
  4. Goldie, C.M. (1967). A class of infinitely divisible random variables. Proc. Cambridge Philos. Soc., 63, 1141-1143. Math. Review 215332.
  5. Hardy, G., Littlewood, J.E. & Pólya, G. (1952). Inequalities. 2nd Edition, Cambridge University Press, Cambridge. Math. Review 46395.
  6. Kaluza, T. (1928). "Uber die koeffizienten reziproker potenzreihen. Math. Z., 28, 161-170. Math. Review 154494.
  7. Kingman, J.F.C. (1972). Regenerative Phenomena. New York: John Wiley & Sons. Math. Review 350861.
  8. Loève, M. (1963). Probability Theory. 3rd Edition, Princeton: Van Nostrand. Math. Review 203748.
  9. Lukacs, E. (1970). Characteristic Functions. 2nd Edition, London: Griffin. Math. Review 3468748.
  10. Rao, C.R. & Shanbhag, D.N. (1994). Choquet-Deny Type Functional Equations with Applications to Stochastic Models. Chichester: John Wiley & Sons. Math. Review 1329995.
  11. Rao, C.R., Shanbhag, D.N., Sapatinas, T. & Rao, M.B. (2009). Some properties of extreme stable laws and related infinitely divisible random variables. J. Statist. Plann. Inference, 139, 802-813. Math. Review 2479829.
  12. Shanbhag, D.N. (1977). On renewal sequences. Bull. London Math. Soc., 9, 79-80. Math. Review 428497.
  13. Shanbhag, D.N. & Sreehari, M. (1977). On certain self-decomposable distributions. Z. Wahrsch. Verw. Gebiete, 38, 217-222. Math. Review 436267.
  14. Shanbhag, D.N., Pestana, D. & Sreehari, M. (1977). Some further results in infinite divisibility. Math. Proc. Cambridge Philos. Soc., 82, 289-295. Math. Review 448483.
  15. Steutel, F.W. (1967). Note on the infinite divisibility of exponential mixtures. Ann. Math. Statist., 38, 1303-1305. Math. Review 215339.
  16. Steutel, F.W. (1970). Preservation of Infinite Divisibility under Mixing and Related Topics. Mathematical Centre Tracts, Vol. 33, Amsterdam: Mathematisch Centrum. Math. Review 278355.
  17. Steutel, F.W. & van Harn, K. (2004). Infinite Divisibility of Probability Distributions on the Real Line. New York: Marcel Dekker. Math. Review 2011862.
  18. Titchmarsh, E.C. (1978). The Theory of Functions. 2nd Edition, Oxford: Oxford University Press. Math. Review number not available.
  19. Zygmund, A. (2002). Trigonometric Series. Volumes I & II, 3rd Edition. Cambridge: Cambridge University Press. Math. Review 1963498.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.