The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Behnen, Konrad. The Randles-Hogg test and an alternative proposal. Comm. Statist. 4 (1975), 203--238. MR0431503 (55 #4501)
  2. Chernoff, Herman. Estimation of the mode. Ann. Inst. Statist. Math. 16 1964 31--41. MR0172382 (30 #2601)
  3. Groeneboom, Piet. The concave majorant of Brownian motion. Ann. Probab. 11 (1983), no. 4, 1016--1027. MR0714964 (85h:60119)
  4. Groeneboom, P. Estimating a monotone density. Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, Vol. II (Berkeley, Calif., 1983), 539--555, Wadsworth Statist./Probab. Ser., Wadsworth, Belmont, CA, 1985. MR0822052 (87i:62076)
  5. Groeneboom, Piet. Limit theorems for convex hulls. Probab. Theory Related Fields 79 (1988), no. 3, 327--368. MR0959514 (89j:60024)
  6. Groeneboom, Piet. Brownian motion with a parabolic drift and Airy functions. Probab. Theory Related Fields 81 (1989), no. 1, 79--109. MR0981568 (90c:60052)
  7. Groeneboom, Piet. Convex hulls of uniform samples from a convex polygon}, To appear in the Advances in Applied Probability, 2011.
  8. Groeneboom Piet, Hooghiemstra Gerard and Hendrik~P. Lopuhaa, Asymptotic normality of the $L_1$ error of the Grenander estimator, Ann. Statist. 27 (1999), no.~4, 1316--1347.
  9. Groeneboom, P.; Lopuhaä, H. P. Isotonic estimators of monotone densities and distribution functions: basic facts. Statist. Neerlandica 47 (1993), no. 3, 175--183. MR1243853 (94m:62107)
  10. Groeneboom, Piet; Pyke, Ronald. Asymptotic normality of statistics based on the convex minorants of empirical distribution functions. Ann. Probab. 11 (1983), no. 2, 328--345. MR0690131 (85e:62030)
  11. Groeneboom, Piet; Wellner, Jon A. Computing Chernoff's distribution. J. Comput. Graph. Statist. 10 (2001), no. 2, 388--400. MR1939706
  12. Ibragimov, I. A.; Linnik, Yu. V. Independent and stationary sequences of random variables.With a supplementary chapter by I. A. Ibragimov and V. V. Petrov.Translation from the Russian edited by J. F. C. Kingman.Wolters-Noordhoff Publishing, Groningen, 1971. 443 pp. MR0322926 (48 #1287)
  13. Janson, Svante; Louchard, Guy; Martin-Löf, Anders. The maximum of Brownian motion with parabolic drift. Electron. J. Probab. 15 (2010), no. 61, 1893--1929. MR2738342
  14. Kurtz, Thomas G. Strong approximation theorems for density dependent Markov chains. Stochastic Processes Appl. 6 (1977/78), no. 3, 223--240. MR0464414 (57 #4344)
  15. Meyer, Mary; Woodroofe, Michael. On the degrees of freedom in shape-restricted regression. Ann. Statist. 28 (2000), no. 4, 1083--1104. MR1810920 (2002c:62069)
  16. Nagaev, A. V. Some properties of convex hulls generated by homogeneous Poisson point processes in an unbounded convex domain. Ann. Inst. Statist. Math. 47 (1995), no. 1, 21--29. MR1341202 (96k:60114)
  17. Pitman, J. W. Remarks on the convex minorant of Brownian motion. Seminar on stochastic processes, 1982 (Evanston, Ill., 1982), 219--227, Progr. Probab. Statist., 5, Birkhäuser Boston, Boston, MA, 1983. MR0733673 (85f:60119)
  18. Prakasa Rao, B. L. S. Estkmation of a unimodal density. Sankhyā Ser. A 31 1969 23--36. MR0267677 (42 #2579)
  19. Scholz, F.-W. Combining independent $P$-values. A Festschrift for Erich L. Lehmann, pp. 379--394, Wadsworth Statist./Probab. Ser., Wadsworth, Belmont, Calif., 1983. MR0689756 (84d:62052)
  20. Sparre Andersen, Erik. On the fluctuations of sums of random variables. II. Math. Scand. 2, (1954). 195--223. MR0068154 (16,839e)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.