The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Anderson, Greg W.; Guionnet, Alice; Zeitouni, Ofer. An introduction to random matrices.Cambridge Studies in Advanced Mathematics, 118. Cambridge University Press, Cambridge, 2010. xiv+492 pp. ISBN: 978-0-521-19452-5 MR2760897 (2011m:60016)
  2. Z. D. Bai and J. Silverstein, Spectral analysis of large dimensional random matrices, Mathematics Monograph Series 2, Science Press, Beijing 2006. MR2567175
  3. Ben Arous, G.; Péché, S. Universality of local eigenvalue statistics for some sample covariance matrices. Comm. Pure Appl. Math. 58 (2005), no. 10, 1316--1357. MR2162782 (2006h:62072)
  4. Bleher, Pavel; Its, Alexander. Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. of Math. (2) 150 (1999), no. 1, 185--266. MR1715324 (2000k:42033)
  5. E. Br\'ezin, S. Hikami, S., An extension of level-spacing universality, cond-mat/9702213.
  6. S. Dallaporta, V. Vu, A Note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner Matrices, arXiv:1101.2553
  7. Deift, P.; Kriecherbauer, T.; McLaughlin, K. T.-R.; Venakides, S.; Zhou, X. Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52 (1999), no. 11, 1335--1425. MR1702716 (2001g:42050)
  8. F. Dyson, Correlations between eigenvalues of a random matrix, Comm. Math. Phys. 19 1970 235--250. MR0278668
  9. Erdős, Laszló. Universality of Wigner random matrices. XVIth International Congress on Mathematical Physics, 86--105, World Sci. Publ., Hackensack, NJ, 2010. MR2730790
  10. Erdős, László; Ramírez, José A.; Schlein, Benjamin; Yau, Horng-Tzer. Universality of sine-kernel for Wigner matrices with a small Gaussian perturbation. Electron. J. Probab. 15 (2010), no. 18, 526--603. MR2639734 (2011h:60015)
  11. Erdős, László; Péché, Sandrine; Ramírez, José A.; Schlein, Benjamin; Yau, Horng-Tzer. Bulk universality for Wigner matrices. Comm. Pure Appl. Math. 63 (2010), no. 7, 895--925. MR2662426 (2011c:60022)
  12. Erdős, László; Ramírez, José; Schlein, Benjamin; Tao, Terence; Vu, Van; Yau, Horng-Tzer. Bulk universality for Wigner Hermitian matrices with subexponential decay. Math. Res. Lett. 17 (2010), no. 4, 667--674. MR2661171 (2011j:60018)
  13. Erdős, László; Schlein, Benjamin; Yau, Horng-Tzer. Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37 (2009), no. 3, 815--852. MR2537522 (2010g:15036)
  14. Erdős, László; Schlein, Benjamin; Yau, Horng-Tzer. Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. IMRN 2010, no. 3, 436--479. MR2587574 (2011h:60016)
  15. Erdős, László; Schlein, Benjamin; Yau, Horng-Tzer. Universality of random matrices and local relaxation flow. Invent. Math. 185 (2011), no. 1, 75--119. MR2810797
  16. L. Erdos, B. Schlein, H.-T. Yau and J. Yin, The local relaxation flow approach to universality of the local statistics for random matrices. arXiv:0911.3687
  17. L. Erdos, H.-T.Yau, H.-T., and J. Yin, Bulk universality for generalized Wigner matrices. arXiv:1001.3453
  18. L. Erdos, H.-T.Yau, H.-T., and J. Yin, Bulk universality for generalized Wigner matrices with Bernoulli distribution. arXiv:1003.3813
  19. L. Erdos, H.-T.Yau, H.-T., and J. Yin, Rigidity of Eigenvalues of Generalized Wigner Matrices. arXiv:1007.4652
  20. J. Ginibre, Statistical ensembles of complex, quaternion, and real matrices, J. Mathematical Phys. 6 (1965), 440-–449. MR173726
  21. A. Guionnet, Grandes matrices aleatoires et theoremes d'universalite, Seminaire BOURBAKI. Avril 2010. 62eme annee, 2009-2010, no 1019.
  22. M. Jimbo, T. Miwa, Y. Mori and M. Sato, Density matrix of an impenetrable Bose gas and the fifth Painlev\'e transcendent, {\it Phys. D 1.} (1980), no. 1, 80--158. MR0573370
  23. Johansson, Kurt. Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Comm. Math. Phys. 215 (2001), no. 3, 683--705. MR1810949 (2002j:15024)
  24. K. Johansson, Universality for certain Hermitian Wigner matrices under weak moment conditions, preprint. arXiv:0910.4467 %
  25. A. Maltsev, B. Schlein, Average Density of States for Hermitian Wigner Matrices, preprint.
  26. Mehta, M. L. Random matrices and the statistical theory of energy levels.Academic Press, New York-London 1967 x+259 pp. MR0220494 (36 #3554)
  27. Pastur, L. A. The spectrum of random matrices.(Russian) Teoret. Mat. Fiz. 10 (1972), no. 1, 102--112. MR0475502 (57 #15106)
  28. L. Pastur and M. Shcherbina, Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles, J. Statist. Phys. 86 (1997), no. 1-2, 109--147. MR1435193
  29. Sinai, Ya.; Soshnikov, A. Central limit theorem for traces of large random symmetric matrices with independent matrix elements. Bol. Soc. Brasil. Mat. (N.S.) 29 (1998), no. 1, 1--24. MR1620151 (99f:60053)
  30. Sinaĭ, Ya. G.; Soshnikov, A. B. A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices.(Russian) Funktsional. Anal. i Prilozhen. 32 (1998), no. 2, 56--79, 96; translation in Funct. Anal. Appl. 32 (1998), no. 2, 114--131 MR1647832 (2000c:82041)
  31. Soshnikov, Alexander. Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys. 207 (1999), no. 3, 697--733. MR1727234 (2001i:82037)
  32. Tao, Terence; Vu, Van. Random matrices: universality of local eigenvalue statistics. Acta Math. 206 (2011), no. 1, 127--204. MR2784665
  33. Tao, Terence; Vu, Van. Random matrices: universality of local eigenvalue statistics up to the edge. Comm. Math. Phys. 298 (2010), no. 2, 549--572. MR2669449 (2011f:60012)
  34. T. Tao, V. Vu, Random covariance matrices: university of local statistics of eigenvalues, to appear in Annals of Probability.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.