The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. V.I. Afanasyev. Limit theorems for a conditional random walk and some applications. MSU. Diss. Cand. Sci. Moscow, 1980 Math. Review number not available.
  2. V.I. Afanasyev, J. Geiger, G. Kersting and V.A. Vatutin. Functional limit theorems for strongly subcritical branching processes in random environment. Stochastic Process. Appl. 115 (2005), 1658-1676. Math. Review 2006i:60119
  3. K.B. Athreya and S. Karlin. On branching processes with random environments: I, II. Ann. Math. Stat. 42 (1971), 1499-1520, 1843-1858. Math. Review 0298780 Math. Review 0298781
  4. V.I. Afanasyev, J. Geiger, G. Kersting and V.A. Vatutin. Criticality for branching processes in random environment. Ann. Probab. 33 (2005), 645-673. Math. Review 2005k:60267
  5. V. Bansaye and J. Berestycki. Large deviations for branching processes in random environment. Markov Process. Related Fields 15 (2009), 493-524. Math. Review 2011h:60058
  6. J. D. Biggins and N. H. Bingham. Large deviations in the supercritical branching process. Adv. in Appl. Probab. 25 (1993), 757-772. Math. Review 94i:60101
  7. N. H. Bingham and C. M. Goldie, J. L. Teugels. Regular Variation. Cambridge University Press (1987) Cambridge. Math. Review 88i:26004
  8. M. Birkner, J. Geiger and G. Kersting. Branching processes in random environment - a view on critical and subcritical cases. Interacting stochastic systems, Springer (2005) Berlin, 265-291. Math. Review 2005i:00006
  9. C. Böinghoff and G. Kersting. Upper large deviations of branching in a random environment - Offspring distributions with geometrically bounded tails. Stoch. Proc. Appl. 120 (2010), 2064-2077. Math. Review 2011j:60083
  10. A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Jones and Barlett Publishers International (1993) London. Math. Review 99d:60030
  11. J. Geiger and G. Kersting. The survival probability of a critical branching process in random environment. Theory Probab. Appl. 45 (2000), 517-525. Math. Review 2004c:60273
  12. J. Geiger, G. Kersting and V.A. Vatutin. Limit theorems for subcritical branching processes in random environment. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), 593-620. Math. Review 2005d:60136
  13. W. Feller. An Introduction to Probability Theory and Its Applications- Volume II. John Wiley & Sons, Inc. (1966) New York. Math. Review 0270403
  14. Y. Guivarc'h, Q. Liu. Asymptotic properties of branching processes in random environment. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 339-344. Math. Review 2002a:60141
  15. F. den Hollander. Large Deviations. Fields Institute Monographs (2000) Providence, RI. Math. Review 2001f:60028
  16. O. Kallenberg. Foundations of Modern Probability. Springer (2001) London. Math. Review 2002m:60002
  17. M. V. Kozlov. On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment. Theory Probab. Appl. 21 (1976), 791-804. Math. Review 0428492
  18. M. V. Kozlov. On large deviations of branching processes in a random environment: geometric distribution of descendants. Discrete Math. Appl. 16 (2006), 155-174. Math. Review 2007m:60065
  19. M. V. Kozlov. On Large Deviations of Strictly Subcritical Branching Processes in a Random Environment with Geometric Distribution of Progeny. Theory Probab. Appl. 54 (2010), 424-446. Math. Review 2011j:60261
  20. A. Rouault. Large deviations and branching processes. Pliska Stud. Math. Bulgar. 13 (2000), 15-38. Math. Review 2002h:60185
  21. W. L. Smith and W.E. Wilkinson. On branching processes in random environments. Ann. Math. Stat. 40 (1969), 814-824. Math. Review 0246380

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.