The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Baake, E. and Herms, I. (2008). Single-crossover dynamics: finite versus infinite populations. Bull. Math. Biol. 70, no. 2, 603--624. MR2389954 (2009d:92042)
  2. Bürger, R. (2000). The mathematical theory of selection, recombination, and mutation. Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester, xii+409 pp. ISBN: 0-471-98653-4 MR1885085 (2002m:92002)
  3. Cerrai, S. and Clément, P. (2004). Well-posedness of the martingale problem for some degenerate diffusion processes occurring in dynamics of populations. Bull. Sci. Math. 128, no. 5, 355--389. MR2066345 (2005h:60249)
  4. Christiansen, F. B. (2000). Population Genetics of Multiple Loci. Wiley Series in Mathematical & Computational Biology. John Wiley & Sons Inc.. New York.
  5. Denniston, C. and Crow, J. (1990). Alternative fitness models with the same allele frequency dynamics. Genetics. 125:201--205.
  6. Devaux, C. and Lande, R. (2008). Incipient allochronic speciation due to non-selective assortative mating by flowering time, mutation and genetic drift. Proc. R. Soc. B. 275:2723--2732.
  7. Etheridge, A. M. (2011). Some mathematical models from population genetics. Lectures from the 39th Probability Summer School held in Saint-Flour, 2009. Lecture Notes in Mathematics, 2012. Springer, Heidelberg, viii+119 pp. ISBN: 978-3-642-16631-0 MR2759587 (Review)
  8. Ethier, S. N. and Kurtz, T. G. (1986). Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, x+534 pp. ISBN: 0-471-08186-8 MR0838085 (88a:60130)
  9. Ethier, S. N. and Nagylaki, T. (1980). Diffusion approximations of Markov chains with two time scales and applications to population genetics. Adv. in Appl. Probab. 12, no. 1, 14--49. MR0552945 (81c:60086)
  10. Ethier, S. N. and Nagylaki, T. (1989). Diffusion approximations of the two-locus Wright-Fisher model. J. Math. Biol. 27, no. 1, 17--28. MR0984223 (90c:60053)
  11. Ewens, W. J. (2004). Mathematical population genetics. I. Theoretical introduction. Second edition. Interdisciplinary Applied Mathematics, 27. Springer-Verlag, New York, xx+417 pp. ISBN: 0-387-20191-2 MR2026891 (2004k:92001)
  12. Fukushima, M. and Stroock, D. (1986). Reversibility of solutions to martingale problems. Probability, statistical mechanics, and number theory, 107--123, Adv. Math. Suppl. Stud., 9, Academic Press, Orlando, FL. MR0875449 (88h:60140)
  13. Geiringer, H. (1944). On the probability theory of linkage in Mendelian heredity. Ann. Math. Statistics 15, 25--57. MR0010384 (6,11g)
  14. Higgs, P. and Derrida, B. (1992). Genetic distance and species formation in evolving populations. J. Mol. Evol., 35:454--465.
  15. Ikeda, N. and Watanabe, S. (1977). A comparison theorem for solutions of stochastic differential equations and its applications. Osaka J. Math. 14, no. 3, 619--633. MR0471082 (57 #10822)
  16. Karlin, S. and Taylor, H. M. (1981). A second course in stochastic processes. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, xviii+542 pp. ISBN: 0-12-398650-8 MR0611513 (82j:60003)
  17. Muirhead, C. and Wakeley, J. (2009). Modeling multiallelic selection using a moran model. Genetics, 182:1141--1157.
  18. Nagylaki, T. (1993). The evolution of multilocus systems under the weak selection. Genetics, 134:627--647.
  19. Schneider, K. A. (2007). Long-term evolution of polygenic traits under frequency-dependent intraspecific competition. Theor. Pop. Biol., 71:342--366.
  20. Yamada, T. and Watanabe, S. (1971). On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11, 155--167. MR0278420 (43 #4150)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.