The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Z. D. Bai and Feifang Hu. Asymptotic theorems for urn models with nonhomogeneous generating matrices. Stochastic Process. Appl. 80 (1999), 87-101. Math. Review MR1670107 (2000b:62028).
  2. Gopal K. Basak and Amites Dasgupta. Central limit theorems for a class of irreducible multicolor urn models. Proc. Indian Acad. Sci. Math. Sci. 117 (2007), 517-543. Math. Review MR2374847 (2009b:60066).
  3. Arup Bose, Amites Dasgupta, and Krishanu Maulik. Multicolor urn models with reducible replacement matrices. Bernoulli 15 (2009), 279-295. Math. Review MR2546808 (2010j:60023).
  4. Arup Bose, Amites Dasgupta, and Krishanu Maulik. Strong laws for balanced triangular urns. J. Appl. Probab. 46 (2009), 571-584. Math. Review MR2535833 (2010j:60024).
  5. Philippe Flajolet, Philippe Dumas, and Vincent Puyhaubert. Some exactly solvable models of urn process theory. Discrete Math. Theor. Comput. Sci. 8 (2006), 59-118. Math. Review (2011b:60030).
  6. Raúl Gouet. Strong convergence of proportions in a multicolor Pólya urn. J. Appl. Probab. 34 (1997), 426-435. Math. Review MR1447347 (98f:60065).
  7. Svante Janson. Functional limit theorems for multitype branching processes and generalized Pólya urns. Stochastic Process. Appl. 110 (2004), 177-245. Math. Review MR2040966 (2005a:60134).
  8. Svante Janson. Limit theorems for triangular urn schemes. Probab. Theory Related Fields 134 (2006), 417-452. Math. Review MR2226887 (2007b:60051).
  9. E. Seneta. Non-negative matrices and Markov chains. Springer Series in Statistics. (2006). Springer, New York. Revised reprint of the second (1981) edition. Math. Review MR2209438.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.