Gaussian Upper Bounds for Heat Kernels of Continuous Time Simple Random Walks
Abstract
We consider continuous time simple random walks with arbitrary speed measure $\theta$ on infinite weighted graphs. Write $p_t(x,y)$ for the heat kernel of this process. Given on-diagonal upper bounds for the heat kernel at two points $x_1,x_2$, we obtain a Gaussian upper bound for $p_t(x_1,x_2)$. The distance function which appears in this estimate is not in general the graph metric, but a new metric which is adapted to the random walk. Long-range non-Gaussian bounds in this new metric are also established. Applications to heat kernel bounds for various models of random walks in random environments are discussed.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1693-1722
Publication Date: September 12, 2011
DOI: 10.1214/EJP.v16-926
References
- S. Andres, M. T. Barlow, J.-D. Deuschel, B. M. Hambly. Invariance principle for the random conductance model. Preprint. Math. Review number not available.
- M. T. Barlow. Random Walks on Graphs. Unpublished manuscript. Math. Review number not available.
- M. T. Barlow. Random walks on supercritical percolation clusters, Ann. Probab. 32 (2004), 3024-3084. Math. Review 2006e:60146
- M. T. Barlow, J.-D. Deuschel. Invariance principle for the random conductance model with unbounded conductances, Ann. Probab. 38 (2010), 234-276. Math. Review 2011c:60329
- M. T. Barlow, R. F. Bass. Random walks on graphical Sierpinski carpets. In: Random walks and discrete potential theory, ed. M. Picardello, W. Woess, Cambridge University Press, 1999. Math. Review 2002c:60116
- E. A. Carlen, S. Kusuoka, D. W. Stroock. Upper bounds for symmetric Markov transition functions, Ann. I. H. Poincare-PR (1987), 245-287. Math. Review 88i:35066
- T. Coulhon, A Grigor'yan, F. Zucca. The discrete integral maximum principle and its applications, Tohoku Math. J. 57 (2005), 559-587. Math. Review 2007j:60070
- E. B. Davies. Large deviations for heat kernels on graphs, J. London Math. Soc. 47 (1993), 65-72. Math. Review 94f:58135
- E. B. Davies. Analysis on graphs and noncommutative geometry, J. Funct. Anal. 111 (1993), 398-430. Math. Review 93m:58110
- E. B. Davies. Explicit constants for Gaussian upper bounds on heat kernels, Am. J. Math. 109 (1987), 319-334. Math. Review 88g:58174
- T. Delmotte. Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoam. 15 (1999), 181-232. Math. Review 2000b:35103
- R. Frank, D. Lenz, D. Wingert. Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory. Preprint. Math. Review number not available.
- A. Grigor'yan. Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Differ. Geom. 45 (1997), 33-52. Math. Review 98g:58167
- A. Grigor'yan. Heat kernel upper bounds on a complete non-compact manifold, Rev. Math. Iberoam. 10 (1994), 395-452. Math. Review 96b:58107
- A. Grigor'yan, X. Huang, J. Masamune. On stochastic completeness of jump processes. To appear in Math. Z. Math. Reivew number not available.
- G. R. Grimmett. Percolation (2nd edition), Springer-Verlag, Berlin, 1999. Math. Review 2001a:60114
- W. Hebisch, L. Saloff-Coste. Gaussian estimates for Markov chains and random walks on groups, Ann. Probab. 21 (1993), 673-709. Math. Review 94m:60144
- W. Hebisch, L. Saloff-Coste. On the relation between elliptic and parabolic Harnack inequalities, Ann. I. Fourier 51 (2001), 1437-1481. Math. Review 2002g:58024
- M. Keller, D. Lenz. Unbounded Laplacians on graphs: basic spectral properties and the heat equation, Math. Model. Nat. Phenom. 5 (2010), 198-224. Math. Review 2011e:60183
- M. Keller, D. Lenz. Dirichlet forms and stochastic completeness of graphs and subgraphs. To appear in J. Reine. Angew. Math. Math. Review number not available.
- P. Mathieu, E. Remy. Isoperimetry and heat kernel decay on percolation clusters, Ann. Probab. 32 (2004), 100-128. Math. Review 2005e:60233
- N. Th. Varopoulos. Hardy-Littlewood theory for semigroups. J. Funct. Anal. 63 (1985), 240-260. Math. Review 87a:31011
- N. Varopoulos, L. Saloff-Coste, T. Coulhon. Analysis and Geometry on Groups, Cambridge University Press, Cambridge, U.K., 1992. Math. Review 95f:43008
- W. Woess. Random Walks on Infinite Graphs and Groups, Cambridge University Press, Cambridge, U.K., 2000. Math. Review 2001k:60006
- A. Weber. Analysis of the physical Laplacian and the heat flow on a locally finite graph, J. Math. Anal. Appl. 370 (2010), 146-158. Math. Review 2011f:35341
This work is licensed under a Creative Commons Attribution 3.0 License.