The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Barlow, M.T., Peres, Y., Sousi, P., Collisions of Random Walks,
  2. Chen, XinXing; Chen, DaYue. Two random walks on the open cluster of $\Bbb Z\sp 2$ meet infinitely often. Sci. China Math. 53 (2010), no. 8, 1971--1978. MR2679079
  3. Chen, Dayue; Wei, Bei; Zhang, Fuxi. A note on the finite collision property of random walks. Statist. Probab. Lett. 78 (2008), no. 13, 1742--1747. MR2453913 (2009k:60024)
  4. Durrett, Richard. Probability.Theory and examples.The Wadsworth & Brooks/Cole Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1991. x+453 pp. ISBN: 0-534-13206-5 MR1068527 (91m:60002)
  5. Krishnapur, Manjunath; Peres, Yuval. Recurrent graphs where two independent random walks collide finitely often. Electron. Comm. Probab. 9 (2004), 72--81 (electronic). MR2081461 (2005h:60017)
  6. Levin, David A.; Peres, Yuval; Wilmer, Elizabeth L. Markov chains and mixing times.With a chapter by James G. Propp and David B. Wilson.American Mathematical Society, Providence, RI, 2009. xviii+371 pp. ISBN: 978-0-8218-4739-8 MR2466937 (2010c:60209)
  7. Liggett, Thomas M. Interacting particle systems.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4 MR0776231 (86e:60089)
  8. Pólya, George. Collected papers. Vol. IV.Probability; combinatorics; teaching and learning in mathematics.Edited by Gian-Carlo Rota, M. C. Reynolds and R. M. Shortt.Mathematicians of Our Time, 22. MIT Press, Cambridge, MA, 1984. ix+642 pp. ISBN: 0-262-16097-8 MR0758990 (85m:01108b)
  9. Revesz, P., Random walk in random and non-random environments. 2nd edition, World Scientific Publishing Co., New Jersey, 2005. \renewcommand 2168855
  10. Woess, Wolfgang. Random walks on infinite graphs and groups.Cambridge Tracts in Mathematics, 138. Cambridge University Press, Cambridge, 2000. xii+334 pp. ISBN: 0-521-55292-3 MR1743100 (2001k:60006)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.