The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Bramson, Maury. Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44 (1983), no. 285, iv+190 pp. MR0705746 (84m:60098)
  2. Fife, Paul C.; McLeod, J. B. A phase plane discussion of convergence to travelling fronts for nonlinear diffusion. Arch. Rational Mech. Anal. 75 (1980/81), no. 4, 281--314. MR0607901 (83b:35085)
  3. Kunita, Hiroshi. Stochastic flows and stochastic differential equations.Cambridge Studies in Advanced Mathematics, 24. Cambridge University Press, Cambridge, 1990. xiv+346 pp. ISBN: 0-521-35050-6 MR1070361 (91m:60107)
  4. Lindvall, Torgny. On Strassen's theorem on stochastic domination. Electron. Comm. Probab. 4 (1999), 51--59 (electronic). MR1711599 (2000k:60006)
  5. McKean, H. P. Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure Appl. Math. 28 (1975), no. 3, 323--331. MR0400428
  6. Mueller, Carl. On the support of solutions to the heat equation with noise. Stochastics Stochastics Rep. 37 (1991), no. 4, 225--245. MR1149348 (93e:60122)
  7. Murray, J. D. Mathematical biology.Second edition.Biomathematics, 19. Springer-Verlag, Berlin, 1993. xiv+767 pp. ISBN: 3-540-57204-X MR1239892 (94j:92002)
  8. Nakayama, Toshiyuki. Support theorem for mild solutions of SDE's in Hilbert spaces. J. Math. Sci. Univ. Tokyo 11 (2004), no. 3, 245--311. MR2097527 (2005k:60069)
  9. Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1991. x+533 pp. ISBN: 3-540-52167-4 MR1083357 (92d:60053)
  10. Sharpe, Michael. General theory of Markov processes.Pure and Applied Mathematics, 133. Academic Press, Inc., Boston, MA, 1988. xii+419 pp. ISBN: 0-12-639060-6 MR0958914 (89m:60169)
  11. Shiga, Tokuzo. Two contrasting properties of solutions for one-dimensional stochastic partial differential equations. Canad. J. Math. 46 (1994), no. 2, 415--437. MR1271224 (95h:60099)
  12. Strassen, V. The existence of probability measures with given marginals. Ann. Math. Statist. 36 1965 423--439. MR0177430 (31 #1693)
  13. Tessitore, Gianmario; Zabczyk, Jerzy. Wong-Zakai approximations of stochastic evolution equations. J. Evol. Equ. 6 (2006), no. 4, 621--655. MR2267702 (2008d:60088)
  14. N. Woodward, University of Warwick Ph.D. Thesis, Stochastic Travelling waves, 2010.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.