The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Arcones, Miguel A. Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22 (1994), no. 4, 2242--2274. MR1331224 (96c:60025)
  2. Bardet, Jean-Marc; Doukhan, Paul; León, José Rafael. Uniform limit theorems for the integrated periodogram of weakly dependent time series and their applications to Whittle's estimate. J. Time Ser. Anal. 29 (2008), no. 5, 906--945. MR2450902 (2009k:60073)
  3. Bardet, Jean-Marc; Lang, Gabriel; Oppenheim, Georges; Philippe, Anne; Stoev, Stilian; Taqqu, Murad S. Semi-parametric estimation of the long-range dependence parameter: a survey. Theory and applications of long-range dependence, 557--577, Birkhäuser Boston, Boston, MA, 2003. MR1957508
  4. Barndorff-Nielsen, Ole E.; Corcuera, José Manuel; Podolskij, Mark. Power variation for Gaussian processes with stationary increments. Stochastic Process. Appl. 119 (2009), no. 6, 1845--1865. MR2519347 (2010c:60120)
  5. Biermé, Hermine; Richard, Frédéric. Estimation of anisotropic Gaussian fields through Radon transform. ESAIM Probab. Stat. 12 (2008), 30--50 (electronic). MR2367992 (2008i:60083)
  6. Billingsley, Patrick. Convergence of probability measures. John Wiley & Sons, Inc., New York-London-Sydney 1968 xii+253 pp. MR0233396 (38 #1718)
  7. Bonami, Aline; Estrade, Anne. Anisotropic analysis of some Gaussian models. J. Fourier Anal. Appl. 9 (2003), no. 3, 215--236. MR1988750 (2004e:60082)
  8. Chan, Grace; Wood, Andrew T. A. Increment-based estimators of fractal dimension for two-dimensional surface data. Statist. Sinica 10 (2000), no. 2, 343--376. MR1769748 (2001c:62110)
  9. Chan, Grace; Wood, Andrew T. A. Estimation of fractal dimension for a class of non-Gaussian stationary processes and fields. Ann. Statist. 32 (2004), no. 3, 1222--1260. MR2065204 (2005i:60062)
  10. J.F. Coeurjolly. Inférence statistique pour les mouvements browniens fractionnaires et multifractionnaires. PhD thesis, University Joseph Fourier, 2000.  Math. Review number not available.
  11. Cramér, Harald; Leadbetter, M. R. Stationary and related stochastic processes. Sample function properties and their applications. Reprint of the 1967 original. Dover Publications, Inc., Mineola, NY, 2004. xiv+348 pp. ISBN: 0-486-43827-9 MR2108670 (2005g:60004)
  12. Doob, J. L. Stochastic processes. John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953. viii+654 pp. MR0058896 (15,445b)
  13. Ginovian, M. S. Nonparametric estimation of the spectrum of homogeneous Gaussian fields. (Russian) ; translated from Izv. Nats. Akad. Nauk Armenii Mat. 34 (1999), no. 2, 5--19 (2000) J. Contemp. Math. Anal. 34 (1999), no. 2, 1--15 (2000) MR1850715 (2002h:62297)
  14. Hannan, E. J. Time series analysis. Methuen's Monographs on Applied Probability and Statistics. Methuen& Co., Ltd., London; John Wiley& Sons, Inc., New York 1960 viii+152 pp. MR0114281 (22 #5105)
  15. Chaos expansions, multiple Wiener-Itô integrals and their applications. Papers from the workshop held in Guanajuato, July 27–31, 1992. Edited by Christian Houdré and Victor Pérez-Abreu. Probability and Stochastics Series. CRC Press, Boca Raton, FL, 1994. xiv+377 pp. ISBN: 0-8493-8072-3 MR1278035 (94m:60001)
  16. Istas, Jacques; Lang, Gabriel. Quadratic variations and estimation of the local Hölder index of a Gaussian process. Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), no. 4, 407--436. MR1465796 (98e:60057)
  17. Kent, John T.; Wood, Andrew T. A. Estimating the fractal dimension of a locally self-similar Gaussian process by using increments. J. Roy. Statist. Soc. Ser. B 59 (1997), no. 3, 679--699. MR1452033 (99a:62136)
  18. Lang, Gabriel; Roueff, François. Semi-parametric estimation of the Hölder exponent of a stationary Gaussian process with minimax rates. Stat. Inference Stoch. Process. 4 (2001), no. 3, 283--306. MR1868724 (2002j:62045)
  19. Lieb, Elliott H.; Loss, Michael. Analysis. Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001. xxii+346 pp. ISBN: 0-8218-2783-9 MR1817225 (2001i:00001)
  20. Mandelbrot, Benoit B.; Van Ness, John W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 1968 422--437. MR0242239 (39 #3572)
  21. Nourdin, Ivan; Peccati, Giovanni. Stein's method on Wiener chaos. Probab. Theory Related Fields 145 (2009), no. 1-2, 75--118. MR2520122 (2010i:60087)
  22. Nourdin, Ivan; Peccati, Giovanni.  Stein's method meets Malliavin calculus: a short survey with new estimates,  Recent development in stochastic dynamics and stochastic analysis,   World Scientific, 2009. Math. Review number not available.
  23. Nourdin, I.; Peccati, G.; Podolskij M., M.. Quantitative Breuer-Major Theorems, to appear in Stochastic Process. Appl., 2010. Math. Review number not available.
  24. Nourdin, Ivan; Peccati, Giovanni; Reinert, Gesine. Invariance principles for homogeneous sums: universality of Gaussian Wiener chaos. Ann. Probab. 38 (2010), no. 5, 1947--1985. MR2722791
  25. Nourdin, Ivan; Peccati, Giovanni; Réveillac, Anthony. Multivariate normal approximation using Stein's method and Malliavin calculus. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), no. 1, 45--58. MR2641769 (Review)
  26. Nualart, David. The Malliavin calculus and related topics. Second edition. Probability and its Applications (New York). Springer-Verlag, Berlin, 2006. xiv+382 pp. ISBN: 978-3-540-28328-7; 3-540-28328-5 MR2200233 (2006j:60004)
  27. Nualart, D.; Ortiz-Latorre, S. Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stochastic Process. Appl. 118 (2008), no. 4, 614--628. MR2394845 (2009h:60053)
  28. Peccati, Giovanni; Tudor, Ciprian A. Gaussian limits for vector-valued multiple stochastic integrals. Séminaire de Probabilités XXXVIII, 247--262, Lecture Notes in Math., 1857, Springer, Berlin, 2005. MR2126978 (2006i:60071)
  29. Yaglom, A. M. Correlation theory of stationary and related random functions. Vol. II. Supplementary notes and references. Springer Series in Statistics. Springer-Verlag, New York, 1987. x+258 pp. ISBN: 0-387-96331-6 MR0915557 (89a:60106)
  30. Zhu, Zhengyuan; Stein, Michael L. Parameter estimation for fractional Brownian surfaces. Statist. Sinica 12 (2002), no. 3, 863--883. MR1929968
  31. Zygmund, A. Trigonometric series. Vol. I, II. Third edition. With a foreword by Robert A. Fefferman. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2002. xii; Vol. I: xiv+383 pp.; Vol. II: viii+364 pp. ISBN: 0-521-89053-5 MR1963498 (2004h:01041) 

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.