The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. E.~Aidekon and S.~Harris. Near-critical survival probability of branching {B}rownian motion with an absorbing barrier. Manuscript in preparation.
  2. R. Benguria and M. C. Depassier. On the speed of pulled fronts with a cutoff. Phys. Rev. E, 75(5), 2007.
  3. R. D. Benguria, M. C. Depassier, and M. Loss. Upper and lower bounds for the speed of pulled fronts with a cut-off. The European Physical Journal B - Condensed Matter and Complex Systems, 61:331--334, 2008.
  4. Bérard, Jean; Gouéré, Jean-Baptiste. Brunet-Derrida behavior of branching-selection particle systems on the line. Comm. Math. Phys. 298 (2010), no. 2, 323--342. MR2669438
  5. N. Berestycki, J. Berestycki, and J. Schweinsberg. The genealogy of branching Brownian motion with absorption. arXiv:1001.2337, 2010.
  6. N. Berestycki, J. Berestycki, and J. Schweinsberg. Survival of near-critical branching Brownian motion. arXiv:1009.0406, 2010.
  7. Biggins, J. D. The first- and last-birth problems for a multitype age-dependent branching process. Advances in Appl. Probability 8 (1976), no. 3, 446--459. MR0420890 (54 #8901)
  8. J.D. Biggins. Branching out. arXiv:1003.4715, 2010.
  9. Biggins, J. D.; Lubachevsky, Boris D.; Shwartz, Adam; Weiss, Alan. A branching random walk with a barrier. Ann. Appl. Probab. 1 (1991), no. 4, 573--581. MR1129775 (92k:60192)
  10. Brunet, E.; Derrida, B.; Mueller, A. H.; Munier, S. Noisy traveling waves: effect of selection on genealogies. Europhys. Lett. 76 (2006), no. 1, 1--7. MR2299937 (2007m:82070)
  11. E. Brunet, B. Derrida, A. H. Mueller, and S. Munier. Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts. Phys. Rev. E, 73(5):056126, May 2006.
  12. Brunet, É.; Derrida, B.; Mueller, A. H.; Munier, S. Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization. Phys. Rev. E (3) 76 (2007), no. 4, 041104, 20 pp. MR2365627 (2008k:82066)
  13. Brunet, Eric; Derrida, Bernard. Shift in the velocity of a front due to a cutoff. Phys. Rev. E (3) 56 (1997), no. 3, part A, 2597--2604. MR1473413 (98j:82048)
  14. Eric Brunet and Bernard Derrida. Microscopic models of traveling wave equations. Computer Physics Communications, 121-122:376--381, 1999.
  15. Brunet, Éric; Derrida, Bernard. Effect of microscopic noise on front propagation. J. Statist. Phys. 103 (2001), no. 1-2, 269--282. MR1828730 (2002b:82053)
  16. Conlon, Joseph G.; Doering, Charles R. On travelling waves for the stochastic Fisher-Kolmogorov-Petrovsky-Piscunov equation. J. Stat. Phys. 120 (2005), no. 3-4, 421--477. MR2182316 (2006j:60064)
  17. Derrida, B.; Simon, D. The survival probability of a branching random walk in presence of an absorbing wall. Europhys. Lett. EPL 78 (2007), no. 6, Art. 60006, 6 pp. MR2366713 (2008j:82054)
  18. Dumortier, Freddy; Popović, Nikola; Kaper, Tasso J. The critical wave speed for the Fisher-Kolmogorov-Petrowskii-Piscounov equation with cut-off. Nonlinearity 20 (2007), no. 4, 855--877. MR2307884 (2009b:35178)
  19. R. Durrett and D. Remenik. Brunet-Derrida particle systems, free boundary problems and Wiener-Hopf equations. arXiv:0907.5180, to appear in Annals of Probability, 2009.
  20. R.A. Fisher. The wave of advance of advantageous genes. Ann. Eugenics, 7:355--369, 1937.
  21. N.Gantert, Yueyun Hu, and Zhan Shi. Asymptotics for the survival probability in a supercritical branching random walk. Ann. Inst. Henri Poincare Probab. Stat., 47(1):111--129, 2011.
  22. Hammersley, J. M. Postulates for subadditive processes. Ann. Probability 2 (1974), 652--680. MR0370721 (51 #6947)
  23. B.Jaffuel. The critical barrier for the survival of the branching random walk with absorption. arXiv:0911.2227, 2009.
  24. Kesten, Harry. Branching Brownian motion with absorption. Stochastic Processes Appl. 7 (1978), no. 1, 9--47. MR0494543 (58 #13384)
  25. Kingman, J. F. C. The first birth problem for an age-dependent branching process. Ann. Probability 3 (1975), no. 5, 790--801. MR0400438 (53 #4271)
  26. A.Kolmogorov, I.Petrovsky, and N.Piscounov. Etude de l'equation de la diffusion avec croissance de la quantite de matiere et son application a un probleme biologique. Bull. Univ. Etat Moscou Ser. Int. Sect. A Math. Mecan., 1(6):1--25, 1937.
  27. C.Mueller, L.Mytnik, and J.Quastel. Effect of noise on front propagation in reaction-diffusion equations of KPP type. arXiv:0902.3423, To appear in Inventiones Math.
  28. Mueller, C.; Mytnik, L.; Quastel, J. Small noise asymptotics of traveling waves. Markov Process. Related Fields 14 (2008), no. 3, 333--342. MR2453698 (2010a:60221)
  29. Pemantle, Robin. Search cost for a nearly optimal path in a binary tree. Ann. Appl. Probab. 19 (2009), no. 4, 1273--1291. MR2538070
  30. Simon, Damien; Derrida, Bernard. Quasi-stationary regime of a branching random walk in presence of an absorbing wall. J. Stat. Phys. 131 (2008), no. 2, 203--233. MR2386578 (2009j:82034)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.