### Boundary Conditions for One-Dimensional Biharmonic Pseudo Process

**Kunio Nishioka**

*(Tokyo Metropolitan University)*

#### Abstract

We study boundary conditions for a stochastic pseudo processes corresponding to the biharmonic operator. The biharmonic pseudo process (

*BPP*for short). is composed, in a sense, of two different particles, a monopole and a dipole. We show how an initial-boundary problems for a 4-th order parabolic differential equation can be represented by*BPP*with various boundary conditions for the two particles: killing, reflection and stopping.Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-27

Publication Date: May 21, 2001

DOI: 10.1214/EJP.v6-86

#### References

- Beghin, L., Hochberg, K., and Orsingher, E. (2000),
*Conditional maximal distributions of processes related to higher-order heat-type equations.*Stoch. Proc. Appl.**85**, 209-223. Math. Review number not avilable. - Burdzy, K. (1993),
*Some path properties of iterated Brownian motion.*in Seminar on Stochastic Process 1992, E. Cinlar, K. L. Chung, and M. Sharpe eds., Birkhauser-Boston, 67-83. Math. Review 95c:60075 - Burdzy, K. and Madrecki, A. (1995),
*An asymptotically 4-stable process.*J. Fourier Anal. Appl. Special Issue, Proceeding of the Conference in Honor of J. P. Kahane, 97-117. Math. Review 96j:60072 - Burdzy, K. and Madrecki, A. (1996),
*Itô formula for an asymptotically 4-stable process.*Ann. of Appl. Prob.**6**, 200-217. Math. Review 99a:60042 - Doetsch, G. (1974),
*Introduction to the Theory and Application of the Laplace Transformation.*Springer-Verlag. Math. Review 49:9549 - Eidelman, S. D. and Zhitarashu, N. V. (1998),
*Parabolic Boundary Value Problems.*Oper. Theor. Adv. Appl.**101**Birkhauser. Math. Review 94m:35134 - Funaki, T. (1979),
*Probabilistic construction of the solution of some higher order parabolic differential equations.*Proc. Japan Acad.**55**, 176-179. Math. Review 80h:60075 - Hochberg, K. J. (1978),
*A signed measure on path space related to Wiener measure.*Ann. Prob.**6**, 433-458. Math. Review 80i:60111 - Krylov, Y, Ju. (1960),
*Some properties of the distribution corresponding to the equation $partial u / partial t = ( - 1 )^{q+1} partial^{2q} u / partial^{2q} x$.*Soviet Math. Dokl.**1**, 760-763. Math. Review 22:9722 - Nakajima, T. and Sato, S. (1999),
*On the joint distribution of the first hitting time and the first hitting place to the space-time wedge domain of a biharmonic pseudo process.*Tokyo J. Math.**22**, 399-413. Math. Review 2000k:60072 - Nishioka, K. (1985),
*Stochastic calculus for a class of evolution equations.*Japan. J. Math.**11**, 59-102. Math. Review 88f:60101 - Nishioka, K. (1987),
*A stochastic solution of a high order parabolic equation.*J. Math. Soc. Japan.**39**, 209-231. Math. Review 89f:35097 - Nishioka, K. (1996),
*Monopole and dipole of a biharmonic pseudo process.*Proc. Japan Acad., Ser. A**72**, 47-50. Math. Review 97g:60117 - Nishioka, K. (1997),
*The first hitting time and place of a half-line by a biharmonic pseudo process.*Japan. J. Math.**23**, 235-280. Math. Review 99f:60080 - Schwartz, L. (1966),
*Mathematics for the physical sciences, 2-nd ed..*Hermann. Math. Review 34:7309 - Strichartz, R. (1994),
*A Guide to Distribution Theory and Fourier Transforms.*CRC Press. Math. Review 95f:42001 - Temam, R. (1997),
*Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2-nd ed..*Appl. Math. Sci.**68**, Springer-Verlag. Math. Review 98b:58056

This work is licensed under a Creative Commons Attribution 3.0 License.