The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. R. Atar, K. Burdzy, On Neumann eigenfunction in Lip domains, J. Amer. Math. Soc. 17 (2004), No. 2, pp. 243 &ndash 265. MR2051611
  2. R. Atar, K. Burdzy, Mirror couplings and Neumann eigenfunctions, Indiana Univ. Math. J. 57 (2008), pp. 1317 &ndash 1351. MR2429094
  3. R. Bañuelos, K. Burdzy, On the "hot spots'' conjecture of J. Rauch, J. Funct. Anal. 164 (1999), No. 1, pp. 1 &ndash 33. MR1694534
  4. R. Bass, K. Burdzy, On domain monotonicity of the Neumann heat kernel, J. Funct. Anal. 116 (1993), No. 1, pp. 215 &ndash 224. MR1237993
  5. R. F. Bass, P. Hsu, Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains, Ann. Probab. 19 (1991), No. 2, pp. 486 &ndash 508. MR1106272
  6. K. Burdzy, Neumann eigenfunctions and Brownian couplings, Proc. Potential theory in Matsue, Adv. Stud. Pure Math. 44 (2006), Math. Soc. Japan, Tokyo, pp. 11 &ndash 23. MR2277819
  7. K. Burdzy, Z. Q. Chen, Coalescence of synchronous couplings, Probab. Theory Related Fields 123 (2002), No. 4, pp. 553 &ndash 578. MR1921013
  8. K. Burdzy, Z. Q. Chen, Weak convergence of reflecting Brownian motions, Electron. Comm. Probab. 3 (1998), pp. 29 &ndash 33 (electronic). MR1625707
  9. K. Burdzy, Z. Q. Chen, P. Jones, Synchronous couplings of reflected Brownian motions in smooth domains, Illinois J. Math. 50 (2006), No. 1 &ndash 4, pp. 189 &ndash 268 (electronic). MR2247829
  10. K. Burdzy, W. S. Kendall, Efficient Markovian couplings: examples and counterexamples, Ann. Appl. Probab. 10 (2000), No. 2, pp. 362 &ndash 409. MR1768241
  11. R. A. Carmona, W. Zheng, Reflecting Brownian motions and comparison theorems for Neumann heat kernels, J. Funct. Anal. 123 (1994), No. 1, pp. 109 &ndash 128. MR1279298
  12. I. Chavel, Heat diffusion in insulated convex domains, J. London Math. Soc. (2) 34 (1986), No. 3, pp. 473 &ndash 478. MR0864450
  13. H. J. Englebert, W. Schmidt, On solutions of one-dimensional stochastic differential equations without drift, Z. Wahrsch. Verw. Gebiete 68 (1985), pp. 287 &ndash 314. MR0771468
  14. E. Hsu, A domain monotonicity property for the Neumann heat kernel, Osaka Math. J. 31 (1994), pp. 215 &ndash 223. MR1262798
  15. K. Itô, H. P. McKean, Diffusion processes and their sample paths, Second edition, Springer-Verlag, Berlin-New York, 1974. MR0345224
  16. W. S. Kendall, Coupled Brownian motions and partial domain monotonicity for the Neumann heat kernel, J. Funct. Anal. 86 (1989), No. 2, pp. 226 &ndash 236. MR1021137
  17. M. N. Pascu, Scaling coupling of reflecting Brownian motions and the hot spots problem, Trans. Amer. Math. Soc. 354 (2002), No. 11, pp. 4681 &ndash 4702. MR1926894
  18. M. N. Pascu, N. R. Pascu, A note on pathwise uniqueness for a degenerate stochastic differential equation (to appear).

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.