The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Alexander, Kenneth S. The effect of disorder on polymer depinning transitions. Comm. Math. Phys. 279 (2008), no. 1, 117--146. MR2377630 (2008m:82045)
  2. Alexander, Kenneth S.; Zygouras, Nikos. Quenched and annealed critical points in polymer pinning models. Comm. Math. Phys. 291 (2009), no. 3, 659--689. MR2534789 (2010h:60271)
  3. Aspandiiarov, S.; Iasnogorodski, R. Tails of passage-times and an application to stochastic processes with boundary reflection in wedges. Stochastic Process. Appl. 66 (1997), no. 1, 115--145. MR1431874 (98a:60057)
  4. Aspandiiarov, S.; Iasnogorodski, R. General criteria of integrability of functions of passage-times for non-negative stochastic processes and their applications. Teor. Veroyatnost. i Primenen. 43 (1998), no. 3, 509--539; translation in Theory Probab. Appl. 43 (1999), no. 3, 343--369 MR1681072 (2000g:60073)
  5. Aspandiiarov, S.; Iasnogorodski, R.; Menshikov, M. Passage-time moments for nonnegative stochastic processes and an application to reflected random walks in a quadrant. Ann. Probab. 24 (1996), no. 2, 932--960. MR1404537 (97m:60064)
  6. Brézis, H.; Rosenkrantz, W.; Singer, B. An extension of Khintchine's estimate for large deviations to a class of Markov chains converging to a singular diffusion. Comm. Pure Appl. Math. 24 (1971), 705--726. MR0300347 (45 #9393)
  7. Carmona, Philippe; Hu, Yueyun. On the partition function of a directed polymer in a Gaussian random environment. Probab. Theory Related Fields 124 (2002), no. 3, 431--457. MR1939654 (2003m:60286)
  8. Coolen-Schrijner, Pauline; van Doorn, Erik A. Analysis of random walks using orthogonal polynomials.Proceedings of the VIIIth Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997). J. Comput. Appl. Math. 99 (1998), no. 1-2, 387--399. MR1662710 (99m:42037)
  9. Comets, Francis; Yoshida, Nobuo. Directed polymers in random environment are diffusive at weak disorder. Ann. Probab. 34 (2006), no. 5, 1746--1770. MR2271480 (2007m:60305)
  10. Csáki, Endre; Földes, Antónia; Révész, Pál. Transient nearest neighbor random walk and Bessel process. J. Theoret. Probab. 22 (2009), no. 4, 992--1009. MR2558662 (Review)
  11. De Coninck, Joël; Dunlop, François; Huillet, Thierry. Random walk weakly attracted to a wall. J. Stat. Phys. 133 (2008), no. 2, 271--280. MR2448534 (2010a:60162)
  12. De Coninck, Joël; Dunlop, François; Huillet, Thierry. Random walk versus random line. Phys. A. 388 (2009), no. 19, 4034--4040. MR2552859 (2010i:60142)
  13. Dette, Holger. First return probabilities of birth and death chains and associated orthogonal polynomials. Proc. Amer. Math. Soc. 129 (2001), no. 6, 1805--1815 (electronic). MR1814114 (2001m:60190)
  14. Dette, Holger; Fill, James Allen; Pitman, Jim; Studden, William J. Wall and Siegmund duality relations for birth and death chains with reflecting barrier.Dedicated to Murray Rosenblatt. J. Theoret. Probab. 10 (1997), no. 2, 349--374. MR1455149 (98f:60168)
  15. Doney, R. A. One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Related Fields 107 (1997), no. 4, 451--465. MR1440141 (98e:60040)
  16. Erickson, K. Bruce. Strong renewal theorems with infinite mean. Trans. Amer. Math. Soc. 151 1970 263--291. MR0268976 (42 #3873)
  17. Falʹ, A. M. Some limit theorems for the simplest Markov random walk.(Russian) Ukrain. Mat. Zh. 33 (1981), no. 4, 564--566. MR0627740 (82k:60144)
  18. Falʹ, A. M. The simplest Markov random walks.(Russian) Dokl. Akad. Nauk SSSR 211 (1973), 540--542. MR0326845 (48 #5187)
  19. Feller, William. An introduction to probability theory and its applications. Vol. I.Third edition John Wiley & Sons, Inc., New York-London-Sydney 1968 xviii+509 pp. MR0228020 (37 #3604)
  20. Giacomin, Giambattista. Random polymer models.Imperial College Press, London, 2007. xvi+242 pp. ISBN: 978-1-86094-786-5; 1-86094-786-7 MR2380992 (2009c:82025)
  21. Giacomin, G., Lacoin, H. and Toninelli, F. (2009). Disorder relevance at marginality and critical point shift. arXiv:0906.1942v1 [math-ph]
  22. Giacomin, Giambattista; Toninelli, Fabio Lucio. Smoothing effect of quenched disorder on polymer depinning transitions. Comm. Math. Phys. 266 (2006), no. 1, 1--16. MR2231963 (2007d:82029)
  23. Göing-Jaeschke, Anja; Yor, Marc. A survey and some generalizations of Bessel processes. Bernoulli 9 (2003), no. 2, 313--349. MR1997032 (2004g:60098)
  24. Halpin-Healy, T. and Zhang, Y.-C. (1995). Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Phys. Reports 254, 215--414.
  25. Hodges, J. L., Jr.; Rosenblatt, M. Recurrence-time moments in random walks. Pacific J. Math. 3, (1953). 127--136. MR0054190 (14,886g)
  26. Hoeffding, Wassily. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 1963 13--30. MR0144363 (26 #1908)
  27. Jain, Naresh C.; Pruitt, William E. The range of random walk. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory, pp. 31--50. Univ. California Press, Berkeley, Calif., 1972. MR0410936 (53 #14677)
  28. Karlin, S.; McGregor, J. L. The differential equations of birth-and-death processes, and the Stieltjes moment problem. Trans. Amer. Math. Soc. 85 (1957), 489--546. MR0091566 (19,989d)
  29. Karlin, Samuel; McGregor, James. The classification of birth and death processes. Trans. Amer. Math. Soc. 86 1957 366--400. MR0094854 (20 #1363)
  30. Karlin, Samuel; McGregor, James. Random walks. Illinois J. Math. 3 1959 66--81. MR0100927 (20 #7352)
  31. Lacoin, Hubert. New bounds for the free energy of directed polymers in dimension $1+1$ and $1+2$. Comm. Math. Phys. 294 (2010), no. 2, 471--503. MR2579463 (2011a:60359)
  32. Lamperti, John. A new class of probability limit theorems. J. Math. Mech. 11 1962 749--772. MR0148120 (26 #5629)
  33. Lamperti, John. Criteria for stochastic processes. II. Passage-time moments. J. Math. Anal. Appl. 7 1963 127--145. MR0159361 (28 #2578)
  34. Menshikov, M. V.; Popov, S. Yu. Exact power estimates for countable Markov chains. Markov Process. Related Fields 1 (1995), no. 1, 57--78. MR1403077 (98f:60132)
  35. Menshikov, M. V.; Vachkovskaia, M.; Wade, A. R. Asymptotic behaviour of randomly reflecting billiards in unbounded tubular domains. J. Stat. Phys. 132 (2008), no. 6, 1097--1133. MR2430776 (2009f:82029)
  36. Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1991. x+533 pp. ISBN: 3-540-52167-4 MR1083357 (92d:60053)
  37. Rosenkrantz, Walter A. A local limit theorem for a certain class of random walks. Ann. Math. Statist. 37 1966 855--859. MR0200988 (34 #873)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.