Scaling Limits for Random Quadrangulations of Positive Genus

Jérémie L Bettinelli (Université Paris Sud)


Abstract. We discuss scaling limits of large bipartite quadrangulations of positive genus. For a given $g$, we consider, for every positive integer $n$, a random quadrangulation $q_n$ uniformly distributed over the set of all rooted bipartite quadrangulations of genus $g$ with $n$ faces. We view it as a metric space by endowing its set of vertices with the graph distance. We show that, as $n$ tends to infinity, this metric space, with distances rescaled by the factor $n$ to the power of $-1/4$, converges in distribution, at least along some subsequence, toward a limiting random metric space. This convergence holds in the sense of the Gromov-Hausdorff topology on compact metric spaces. We show that, regardless of the choice of the subsequence, the Hausdorff dimension of the limiting space is almost surely equal to $4$. Our main tool is a bijection introduced by Chapuy, Marcus, and Schaeffer between the quadrangulations we consider and objects they call well-labeled $g$-trees. An important part of our study consists in determining the scaling limits of the latter.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1594-1644

Publication Date: October 20, 2010

DOI: 10.1214/EJP.v15-810


  1. Bender, Edward A.; Canfield, E. Rodney. The number of rooted maps on an orientable surface. J. Combin. Theory Ser. B 53 (1991), no. 2, 293--299. MR1129556 (92g:05100)
  2. Bertoin, Jean; Chaumont, Loïc; Pitman, Jim. Path transformations of first passage bridges. Electron. Comm. Probab. 8 (2003), 155--166 (electronic). MR2042754 (2005d:60132)
  3. Billingsley, Patrick. Convergence of probability measures. John Wiley & Sons, Inc., New York-London-Sydney 1968 xii+253 pp. MR0233396 (38 #1718)
  4. Burago, Dmitri; Burago, Yuri; Ivanov, Sergei. A course in metric geometry. Graduate Studies in Mathematics, 33. American Mathematical Society, Providence, RI, 2001. xiv+415 pp. ISBN: 0-8218-2129-6 MR1835418 (2002e:53053)
  5. Chapuy, Guillaume. The structure of unicellular maps, and a connection between maps of positive genus and planar labelled trees. Probability Theory and Related Fields 147 (2010), no. 3, 415--447. Math. Review number not available
  6. Chapuy, Guillaume; Marcus, Michel; Schaeffer, Gilles. A bijection for rooted maps on orientable surfaces. SIAM J. Discrete Math. 23 (2009), no. 3, 1587--1611. MR2563085 (2010k:05142)
  7. Chassaing, Philippe; Schaeffer, Gilles. Random planar lattices and integrated superBrownian excursion. Probab. Theory Related Fields 128 (2004), no. 2, 161--212. MR2031225 (2004k:60016)
  8. Cori, Robert; Vauquelin, Bernard. Planar maps are well labeled trees. Canad. J. Math. 33 (1981), no. 5, 1023--1042. MR0638363 (83c:05070)
  9. Duquesne, Thomas; Le Gall, Jean-François. Random trees, Lévy processes and spatial branching processes. Astérisque No. 281 (2002), vi+147 pp. MR1954248 (2003m:60239)
  10. Ethier, Stewart N.; Kurtz, Thomas G. Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. x+534 pp. ISBN: 0-471-08186-8 MR0838085 (88a:60130)
  11. Federer, Herbert. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York 1969 xiv+676 pp. MR0257325 (41 #1976)
  12. Fitzsimmons, Pat; Pitman, Jim; Yor, Marc. Markovian bridges: construction, Palm interpretation, and splicing. Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), 101--134, Progr. Probab., 33, Birkhäuser Boston, Boston, MA, 1993. MR1278079 (95i:60070)
  13. Gao, Zhicheng. The number of degree restricted maps on general surfaces. Discrete Math. 123 (1993), no. 1-3, 47--63. MR1256081 (94j:05008)
  14. Gromov, Misha. Metric structures for Riemannian and non-Riemannian spaces. Based on the 1981 French original [MR0682063 (85e:53051)]. With appendices by M. Katz, P. Pansu and S. Semmes. Translated from the French by Sean Michael Bates. Progress in Mathematics, 152. Birkhäuser Boston, Inc., Boston, MA, 1999. xx+585 pp. ISBN: 0-8176-3898-9 MR1699320 (2000d:53065)
  15. Le Gall, Jean-François. Master course: Mouvement brownien, processus de branchement et superprocessus, 1994. Available on
  16. Le Gall, Jean-François. Spatial branching processes, random snakes and partial differential equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1999. x+163 pp. ISBN: 3-7643-6126-3 MR1714707 (2001g:60211)
  17. Le Gall, Jean-François. The topological structure of scaling limits of large planar maps. Invent. Math. 169 (2007), no. 3, 621--670. MR2336042 (2008i:60022)
  18. Le Gall, Jean-François; Miermont, Grégory. Scaling limits of random planar maps with large faces. arXiv:0907.3262 to appear in Ann. Probab. 2009.
  19. Le Gall, Jean-François; Paulin, Frédéric. Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. Geom. Funct. Anal. 18 (2008), no. 3, 893--918. MR2438999 (2010a:60030)
  20. Marckert, Jean-François; Mokkadem, Abdelkader. States spaces of the snake and its tour---convergence of the discrete snake. J. Theoret. Probab. 16 (2003), no. 4, 1015--1046 (2004). MR2033196 (2005c:60095)
  21. Marckert, Jean-François; Mokkadem, Abdelkader. Limit of normalized quadrangulations: the Brownian map. Ann. Probab. 34 (2006), no. 6, 2144--2202. MR2294979 (2007m:60092)
  22. Miermont, Grégory. On the sphericity of scaling limits of random planar quadrangulations. Electron. Commun. Probab. 13 (2008), 248--257. MR2399286 (2009d:60024)
  23. Miermont, Grégory. Tessellations of random maps of arbitrary genus. Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 5, 725--781. MR2571957
  24. Neveu, J. Arbres et processus de Galtonmhy Watson. (French) [Galton-Watson trees and processes] Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), no. 2, 199--207. MR0850756 (88a:60150)
  25. Petrov, V. V. Sums of independent random variables. Translated from the Russian by A. A. Brown. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82. Springer-Verlag, New York-Heidelberg, 1975. x+346 pp. MR0388499 (52 #9335)
  26. Petrov, Valentin V. Limit theorems of probability theory. Sequences of independent random variables. Oxford Studies in Probability, 4. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. xii+292 pp. ISBN: 0-19-853499-X MR1353441 (96h:60048)
  27. Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion. Third edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999. xiv+602 pp. ISBN: 3-540-64325-7 MR1725357 (2000h:60050)
  28. Schaeffer, Gilles. Conjugaison d'arbres et cartes combinatoires aléatoires. PhD thesis, Université de Bordeaux 1, 1998.
  29. Schwartz, Laurent. Analyse. (French) Deuxième partie: Topologie générale et analyse fonctionnelle. Collection Enseignement des Sciences, No. 11. Hermann, Paris, 1970. 433 pp. MR0467223 (57 #7087)
  30. Stroock, Daniel W. Probability theory, an analytic view. Cambridge University Press, Cambridge, 1993. xvi+512 pp. ISBN: 0-521-43123-9 MR1267569 (95f:60003)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.