The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Bell, J. B. and Marcus, D. L. (1992), Vorticity intensification and the transition to turbulence in the three-dimensional Euler equation, Comm. Math. Phys. 147, 371-394 MR 93c:76048
  2. Caffarelli, L. Kohn, R. and Nirenberg, L. (1982), Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. XXXV, 771-831 MR 84m:35097
  3. Chorin, A. J. (1982), The evolution of a turbulent vortex, Comm. Math. Phys. 83, 517-535. MR 83g:76042
  4. Chorin A. J. (1994), Vorticity and Turbulence, Springer-Verlag, New York. MR 95m:76043
  5. Flandoli, F. and Schmalfuss, B. (1999), Weak solutions and attractors for the 3 dimensional Navier-Stokes equations with non-regular force, J. Dyn. Diff. Eq. 11, Nr. 2, 355-398. MR 2000j:60076
  6. Fursikov, A. V. (1983), Statistical extremal problems and unique solvability of the three dimensional Navier-Stokes system under almost all initial conditions, PMM USSR 46, Nr. 5, 637-644. MR 84k:76046
  7. Gallavotti, G. (1996), Ipotesi per una introduzione alla meccanica dei fluidi, Quaderni CNR-GNFM, Roma.
  8. Grauer, R. and Sideris, T. (1991), Numerical computation of 3D incompressible ideal fluids with swirl, Phys. Rev. Lett. 67, 3511-3514.
  9. Kerr, R. (1993), Evidence for a singularity of the three dimensional incompressible Euler equation, Phys. Fluids A 6, 1725-1739. MR 94d:76015
  10. Lanford III, O. E. (1975), Time evolution of large classical systems, in: Dynamical systems, theory and applications, Lecture Notes in Physics, Vol. 38, Springer-Verlag, Berlin. MR 57#18653
  11. Lin, F. (1998), A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math. LI, 241-257. MR 98k:35151
  12. Lions, P. L. (1996), Mathematical Topics in Fluid Mechanics, Vol. I, Clarendon Press, Oxford. 98b:76001
  13. Romito, M. (2000), Ph.D. Thesis, Pisa.
  14. Scheffer, V. (1980), The Navier-Stokes equations on a bounded domain, Comm. Math. Phys. 73, 1-42. MR 81f:35097
  15. Sell, G. (1996), Global attractor for the 3D Navier-Stokes equations, J. Dyn. Diff. Eq. 8. MR 98e:35127
  16. Serrin, J. (1962), On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rat. Mech. Anal. 9, 187-195. MR 25:346
  17. Siegmund-Schultze, R. (1985), On non-equilibrium dynamics of multidimensional infinite particle systems in the translation invariant case, Comm. Math. Phys. 100, 245-265. MR 87a:82014
  18. Sohr, H. and von Wahl, W. (1986), On the regularity of the pressure of weak solutions of Navier-Stokes equations, Arch. Math. (Basel) 46, 428-439. MR 87g:35190
  19. Temam, R. (1977), The Navier-Stokes equations, North Holland. MR 58:29439
  20. Temam, R. (1983), Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia. MR 86f:35152
  21. Temam, R. (1988), Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York. MR 89m:58056
  22. Vishik M. I. and Fursikov, A. V. (1980), Mathematical Problems of Statistical Hydromechanics, Kluwer, Dordrecht. MR 82g:35095

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.