The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Aldous, D. (1993), The continuum random tree III. Ann. Probab. 21, 248-289. Math. Review 94c:60015
  2. Aldous, D. and Pitman, J. (1998), Tree-valued Markov chains derived from Galton-Watson processes. Ann. Inst. H. Poincare 34, 637-686. Math. Review 2000c:60130
  3. Athreya, K. B. and Ney, P. (1972), Branching Processes. Springer, New York. Math. Review 51:9242
  4. Chauvin, B., Rouault, A. and Wakolbinger, A. (1991), Growing conditioned trees. Stoch. Proc. Appl. 39, 117-130. Math. Review 93d:60138
  5. Cox, J.T. and Geiger, J. (2000), The genealogy of a cluster in the multitype voter model. to appear in Ann. Probab. Math. Review number not available.
  6. Durrett, R. (1978), The genealogy of critical branching processes. Stoch. Proc. Appl. 8, 101-116. Math. Review 80d:60107
  7. Feller, W. (1968), An Introduction to Probability Theory and Its Applications~I. 3rd ed., Wiley, New York. Math. Review 37:3604
  8. Fleischmann, K. and Siegmund-Schultze, R. (1977), The structure of reduced critical Galton-Watson processes. Math. Nachr. 79, 233-241. Math. Review 57:16743
  9. Geiger, J. (1996), Size-biased and conditioned random splitting trees. Stoch. Proc. Appl. 65, 187-207. Math. Review 97h:60092
  10. Geiger, J. (1999), Elementary new proofs of classical limit theorems for Galton-Watson processes. J. Appl. Prob. 36, 301-309. Math. Review number not available.
  11. Jagers, P. and Nerman, O. (1984), The growth and composition of branching populations. Adv. Appl. Prob. 16, 221-259. Math. Review 86j:60193
  12. Joffe, A. and Waugh, W. A. O'N (1982), Exact distributions of kin numbers in Galton--Watson processes. J. Appl. Prob. 19, 767-775. Math. Review 84a:60104
  13. Kallenberg, O. (1977), Stability of critical cluster fields. Math. Nachr. 77, 7-43. Math. Review 56:1451
  14. Kingman, J.F.C. (1993), Poisson processes. Clarendon Press, Oxford. Math. Review 94a:60052
  15. Le Gall, J. F. (1991), Brownian excursions, trees and measure-valued branching processes. Ann. Probab. 19, 1399-1439. Math. Review 93b:60195
  16. Lyons, R., Pemantle, R. and Peres, Y. (1995), Conceptual proofs of L log L criteria for mean behavior of branching processes. Ann. Probab. 23, 1125-1138. Math. Review 96m:60194
  17. Neveu, J. (1986), Arbres et processus de Galton-Watson. Ann. Inst. H. Poincare 22, 199-207. Math. Review 88a:60150
  18. Rogers, L.C.G. and Williams, D. (1994), Diffusions, Markov Processes, and Martingales, Vol. 1: Foundations. 2nd ed., Wiley, Chichester. Math. Review 96h:60116
  19. Sawyer, S. (1979), A limit theorem for patch sizes in a selectively-neutral migration model. J. Appl. Prob. 16, 482-495. Math. Review 80j:92012

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.