Poisson point process limits in size-biased Galton-Watson trees

Jochen Geiger (Universität Frankfurt)


Consider a critical binary continuous-time Galton-Watson tree size-biased according to the number of particles at time $t$. Decompose the population at $t$ according to the particles' degree of relationship with a distinguished particle picked purely at random from those alive at $t$. Keeping track of the times when the different families grow out of the distinguished line of descent and the related family sizes at $t$, we represent this relationship structure as a point process in a time-size plane. We study limits of these point processes in the single- and some multitype case.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-12

Publication Date: July 10, 2000

DOI: 10.1214/EJP.v5-73


  1. Aldous, D. (1993), The continuum random tree III. Ann. Probab. 21, 248-289. Math. Review 94c:60015
  2. Aldous, D. and Pitman, J. (1998), Tree-valued Markov chains derived from Galton-Watson processes. Ann. Inst. H. Poincare 34, 637-686. Math. Review 2000c:60130
  3. Athreya, K. B. and Ney, P. (1972), Branching Processes. Springer, New York. Math. Review 51:9242
  4. Chauvin, B., Rouault, A. and Wakolbinger, A. (1991), Growing conditioned trees. Stoch. Proc. Appl. 39, 117-130. Math. Review 93d:60138
  5. Cox, J.T. and Geiger, J. (2000), The genealogy of a cluster in the multitype voter model. to appear in Ann. Probab. Math. Review number not available.
  6. Durrett, R. (1978), The genealogy of critical branching processes. Stoch. Proc. Appl. 8, 101-116. Math. Review 80d:60107
  7. Feller, W. (1968), An Introduction to Probability Theory and Its Applications~I. 3rd ed., Wiley, New York. Math. Review 37:3604
  8. Fleischmann, K. and Siegmund-Schultze, R. (1977), The structure of reduced critical Galton-Watson processes. Math. Nachr. 79, 233-241. Math. Review 57:16743
  9. Geiger, J. (1996), Size-biased and conditioned random splitting trees. Stoch. Proc. Appl. 65, 187-207. Math. Review 97h:60092
  10. Geiger, J. (1999), Elementary new proofs of classical limit theorems for Galton-Watson processes. J. Appl. Prob. 36, 301-309. Math. Review number not available.
  11. Jagers, P. and Nerman, O. (1984), The growth and composition of branching populations. Adv. Appl. Prob. 16, 221-259. Math. Review 86j:60193
  12. Joffe, A. and Waugh, W. A. O'N (1982), Exact distributions of kin numbers in Galton--Watson processes. J. Appl. Prob. 19, 767-775. Math. Review 84a:60104
  13. Kallenberg, O. (1977), Stability of critical cluster fields. Math. Nachr. 77, 7-43. Math. Review 56:1451
  14. Kingman, J.F.C. (1993), Poisson processes. Clarendon Press, Oxford. Math. Review 94a:60052
  15. Le Gall, J. F. (1991), Brownian excursions, trees and measure-valued branching processes. Ann. Probab. 19, 1399-1439. Math. Review 93b:60195
  16. Lyons, R., Pemantle, R. and Peres, Y. (1995), Conceptual proofs of L log L criteria for mean behavior of branching processes. Ann. Probab. 23, 1125-1138. Math. Review 96m:60194
  17. Neveu, J. (1986), Arbres et processus de Galton-Watson. Ann. Inst. H. Poincare 22, 199-207. Math. Review 88a:60150
  18. Rogers, L.C.G. and Williams, D. (1994), Diffusions, Markov Processes, and Martingales, Vol. 1: Foundations. 2nd ed., Wiley, Chichester. Math. Review 96h:60116
  19. Sawyer, S. (1979), A limit theorem for patch sizes in a selectively-neutral migration model. J. Appl. Prob. 16, 482-495. Math. Review 80j:92012

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.