The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Basawa, I. V.; Zhou, J. Non-Gaussian bifurcating models and quasi-likelihood estimation.Stochastic methods and their applications. J. Appl. Probab. 41A (2004), 55--64. MR2057565
  2. Cowan, R., and Staudte, R.~G. The bifurcating autoregressive model in cell lineage studies. Biometrics 42 (1986), 769--783.
  3. Delmas, J.-F., and Marsalle, L. Detection of cellular aging in a Galton-Watson process. arXiv, 0807.0749 (2008).
  4. Duflo, Marie. Random iterative models.Translated from the 1990 French original by Stephen S. Wilson and revised by the author.Applications of Mathematics (New York), 34. Springer-Verlag, Berlin, 1997. xviii+385 pp. ISBN: 3-540-57100-0 MR1485774 (98m:62239)
  5. Guyon, Julien. Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17 (2007), no. 5-6, 1538--1569. MR2358633 (2009e:60051)
  6. Guyon, Julien; Bize, Ariane; Paul, Grégory; Stewart, Eric; Delmas, Jean-Francois; Taddéi, Francois. Statistical study of cellular aging. CEMRACS 2004---mathematics and applications to biology and medicine, 100--114 (electronic), ESAIM Proc., 14, EDP Sci., Les Ulis, 2005. MR2226805
  7. Hall, P.; Heyde, C. C. Martingale limit theory and its application.Probability and Mathematical Statistics.Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. xii+308 pp. ISBN: 0-12-319350-8 MR0624435 (83a:60001)
  8. Hamilton, James D. Time series analysis.Princeton University Press, Princeton, NJ, 1994. xvi+799 pp. ISBN: 0-691-04289-6 MR1278033 (95h:62165)
  9. Huggins, R. M. Robust inference for variance components models for single trees of cell lineage data. Ann. Statist. 24 (1996), no. 3, 1145--1160. MR1401842 (97k:62065)
  10. Huggins, R. M.; Basawa, I. V. Extensions of the bifurcating autoregressive model for cell lineage studies. J. Appl. Probab. 36 (1999), no. 4, 1225--1233. MR1746406
  11. Huggins, R. M.; Basawa, I. V. Inference for the extended bifurcating autoregressive model for cell lineage studies. Aust. N. Z. J. Stat. 42 (2000), no. 4, 423--432. MR1802966 (2002d:62061)
  12. Hwang, S.~Y., Basawa, I.~V., and Yeo, I.~K. Local asymptotic normality for bifurcating autoregressive processes and related asymptotic inference. Statistical Methodology 6 (2009), 61--69.
  13. Wei, C. Z. Adaptive prediction by least squares predictors in stochastic regression models with applications to time series. Ann. Statist. 15 (1987), no. 4, 1667--1682. MR0913581 (89e:62123)
  14. Zhou, J.; Basawa, I. V. Least-squares estimation for bifurcating autoregressive processes. Statist. Probab. Lett. 74 (2005), no. 1, 77--88. MR2189078 (2006m:62073)
  15. Zhou, J.; Basawa, I. V. Maximum likelihood estimation for a first-order bifurcating autoregressive process with exponential errors. J. Time Ser. Anal. 26 (2005), no. 6, 825--842. MR2203513 (2006m:62026)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.