The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Bai, Z. D. Methodologies in spectral analysis of large-dimensional random matrices, a review. With comments by G. J. Rodgers and Jack W. Silverstein; and a rejoinder by the author. Statist. Sinica 9 (1999), no. 3, 611--677. MR1711663 (2000e:60044).

  2. Bai, Zhidong; Zhou, Wang. Large sample covariance matrices without independence structures in columns. Statist. Sinica 18 (2008), no. 2, 425--442. MR2411613 (2009d:60075).

  3. Bhatia, Rajendra. Matrix analysis. Graduate Texts in Mathematics, 169. Springer-Verlag, New York, 1997. xii+347 pp. ISBN: 0-387-94846-5 MR1477662 (98i:15003).

  4. Bhattacharya, R. N.; Ranga Rao, R. Normal approximation and asymptotic expansions. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York-London-Sydney, 1976. xiv+274 pp. MR0436272 (55 #9219).

  5. Bose, Arup; Mitra, Joydip. Limiting spectral distribution of a special circulant. Statist. Probab. Lett. 60 (2002), no. 1, 111--120. MR1945684 (2003j:60043).

  6. Bose, Arup; Mitra, Joydip; Sen, Arnab. Large dimensional random k-circulants. Technical Report No.R10/2008, Stat-Math Unit, Indian Statistical Institute, Kolkata. Submitted for publication.

  7. Bose, Arup; Sen, Arnab. Another look at the moment method for large dimensional random matrices. Electron. J. Probab. 13 (2008), no. 21, 588--628. MR2399292 (2009d:60049).

  8. Brockwell, Peter J.; Davis, Richard A. Introduction to time series and forecasting. Second edition. With 1 CD-ROM (Windows). Springer Texts in Statistics. Springer-Verlag, New York, 2002. xiv+434 pp. ISBN: 0-387-95351-5 MR1894099 (2002m:62002).

  9. Bryc, W?odzimierz; Dembo, Amir; Jiang, Tiefeng. Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab. 34 (2006), no. 1, 1--38. MR2206341 (2007c:60039).

  10. Chatterjee, Sourav. A generalization of the Lindeberg principle. Ann. Probab. 34 (2006), no. 6, 2061--2076. MR2294976 (2008c:60028).

  11. Fan, Jianqing; Yao, Qiwei. Nonlinear time series. Nonparametric and parametric methods. Springer Series in Statistics. Springer-Verlag, New York, 2003. xx+551 pp. ISBN: 0-387-95170-9 MR1964455 (2004a:62002).

  12. Meckes, Mark W. Some results on random circulant matrice. arXiv:0902.2472v1 [math.PR], 2009.

  13. Massey, Adam; Miller, Steven J.; Sinsheimer, John. Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices. J. Theoret. Probab. 20 (2007), no. 3, 637--662. MR2337145 (2008f:15082).

  14. Zhou, Jin Tu. A formula solution for the eigenvalues of $g$-circulant matrices. (Chinese) Math. Appl. (Wuhan) 9 (1996), no. 1, 53--57. MR1384201 (97d:15017).

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.