The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Bertoin, Jean. Lévy processes. Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996. x+265 pp. ISBN: 0-521-56243-0 MR1406564 (98e:60117)
  2. Bertoin, Jean; Le Gall, Jean-François. Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 (2003), no. 2, 261--288. MR1990057 (2004f:60080)
  3. Billingsley, Patrick. Convergence of probability measures. John Wiley & Sons, Inc., New York-London-Sydney 1968 xii+253 pp. MR0233396 (38 #1718)
  4. Birkner, Matthias; Blath, Jochen. Measure-valued diffusions, general coalescents and population genetic inference. Trends in Stochastic Analysis, LMS 353, Cambridge University Press, 329--363 (2009).
  5. Birkner, Matthias; Blath, Jochen; Capaldo, Marcella; Etheridge, Alison; Möhle, Martin; Schweinsberg, Jason; Wakolbinger, Anton. Alpha-stable branching and beta-coalescents. Electron. J. Probab. 10 (2005), no. 9, 303--325 (electronic). MR2120246 (2006c:60100)
  6. Birkner, Matthias; Blath, Jochen; Möhle, Martin; Steinrücken, Matthias; Tams, Johanna. A modified lookdown construction for the Xi-Fleming-Viot process with mutation and populations with recurrent bottlenecks. ALEA Lat. Am. J. Probab. Math. Stat. 6 (2009), 25--61. MR2485878
  7. Dawson, Donald A. Measure-valued Markov processes. École d'Été de Probabilités de Saint-Flour XXI---1991, 1--260, Lecture Notes in Math., 1541, Springer, Berlin, 1993. MR1242575 (94m:60101)
  8. Dawson, Donald A.; Hochberg, Kenneth J. Wandering random measures in the Fleming-Viot model. Ann. Probab. 10 (1982), no. 3, 554--580. MR0659528 (84i:92044)
  9. Donnelly, Peter; Kurtz, Thomas G. A countable representation of the Fleming-Viot measure-valued diffusion. Ann. Probab. 24 (1996), no. 2, 698--742. MR1404525 (98f:60162)
  10. Donnelly, Peter; Kurtz, Thomas G. Particle representations for measure-valued population models. Ann. Probab. 27 (1999), no. 1, 166--205. MR1681126 (2000f:60108)
  11. El Karoui, Nicole; Roelly, Sylvie. Propriétés de martingales, explosion et représentation de Lévy-Khintchine d'une classe de processus de branchement à valeurs mesures. (French) [Martingale properties, explosion and Levy-Khinchin representation of a class of measure-valued branching processes] Stochastic Process. Appl. 38 (1991), no. 2, 239--266. MR1119983 (92k:60194)
  12. Etheridge, Alison M. An introduction to superprocesses. University Lecture Series, 20. American Mathematical Society, Providence, RI, 2000. xii+187 pp. ISBN: 0-8218-2706-5 MR1779100 (2001m:60111)
  13. Etheridge, Alison; March, Peter. A note on superprocesses. Probab. Theory Related Fields 89 (1991), no. 2, 141--147. MR1110534 (92h:60080)
  14. Ethier, Stewart N.; Kurtz, Thomas G. Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. x+534 pp. ISBN: 0-471-08186-8 MR0838085 (88a:60130)
  15. Feller, William. An introduction to probability theory and its applications. Vol. II. John Wiley & Sons, Inc., New York-London-Sydney 1966 xviii+636 pp. MR0210154 (35 #1048)
  16. Fleischmann, Klaus; Sturm, Anja. A super-stable motion with infinite mean branching. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), no. 5, 513--537. MR2086012 (2005h:60254)
  17. Fleischmann, Klaus; Wachtel, Vitali. Large scale localization of a spatial version of Neveu's branching process. Stochastic Process. Appl. 116 (2006), no. 7, 983--1011. MR2238611 (2007j:60141)
  18. Fleming, Wendell H.; Viot, Michel. Some measure-valued Markov processes in population genetics theory. Indiana Univ. Math. J. 28 (1979), no. 5, 817--843. MR0542340 (81a:60059)
  19. Kingman, J. F. C. The coalescent. Stochastic Process. Appl. 13 (1982), no. 3, 235--248. MR0671034 (84a:60079)
  20. Möhle, Martin; Sagitov, Serik. A classification of coalescent processes for haploid exchangeable population models. Ann. Probab. 29 (2001), no. 4, 1547--1562. MR1880231 (2003b:60134)
  21. Perkins, Edwin A. Conditional Dawson-Watanabe processes and Fleming-Viot processes. Seminar on Stochastic Processes, 1991 (Los Angeles, CA, 1991), 143--156, Progr. Probab., 29, Birkhäuser Boston, Boston, MA, 1992. MR1172149 (93h:60078)
  22. Pitman, Jim. Coalescents with multiple collisions. Ann. Probab. 27 (1999), no. 4, 1870--1902. MR1742892 (2001h:60016)
  23. Pitman, J. Combinatorial stochastic processes. Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7--24, 2002. With a foreword by Jean Picard. Lecture Notes in Mathematics, 1875. Springer-Verlag, Berlin, 2006. x+256 pp. ISBN: 978-3-540-30990-1; 3-540-30990-X MR2245368 (2008c:60001)
  24. Sagitov, Serik. The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 (1999), no. 4, 1116--1125. MR1742154 (2001f:92019)
  25. Schweinsberg, Jason. A necessary and sufficient condition for the $\Lambda$-coalescent to come down from infinity. Electron. Comm. Probab. 5 (2000), 1--11 (electronic). MR1736720 (2001g:60025)
  26. Skorohod, A. V. Limit theorems for stochastic processes. (Russian) Teor. Veroyatnost. i Primenen. 1 (1956), 289--319. MR0084897 (18,943c)
  27. Yosida, Kôsaku. Functional analysis. Die Grundlehren der Mathematischen Wissenschaften, Band 123 Academic Press, Inc., New York; Springer-Verlag, Berlin 1965 xi+458 pp. MR0180824 (31 #5054)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.