The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Beale, J. T. (1986) Large-Time Behavior of Discrete Velocity Boltzmann Equations. Commun. Math. Phys., 106, 659-678. Math. Review 87j:82056
  2. Champneys, A., Harris, S., Toland, J., Warren, J. & Williams, D. (1995) Algebra, analysis and probability for a coupled system of reaction-diffusion equations. Phil. Trans. R. Soc. Lond., A 350, 69--112. Math. Review 96e:35080
  3. Coddington, E. A. & Levinson, N. (1955) Theory of Ordinary Differential Equations. New York: McGraw-Hill. Math. Review 16,1022b
  4. Cohen, J.E. (1981) Convexity of the dominant eigenvalue of an essentially non-negative matrix. Proc. Amer. Math. Soc., 81, 657--658. Math. Review 82a:15016
  5. Courant, R. & Hilbert, D. (1962) Methods of Mathematical Physics, Volume II. New York: Interscience. Math. Review 25 #4216
  6. Crooks, E. C. M. (1996) On the Vol'pert theory of travelling-wave solutions for parabolic systems. Nonlinear Analysis, Theory, Methods and Applications. 26, 1621--1642. Math. Review 97a:35094
  7. Deuschel, J-D. & Stroock, D.W. (1989) Large Deviations. Boston: Academic Press. Math. Review 90h:60026
  8. Dunbar, S.R. (1988) A branching random evolution and a nonlinear hyperbolic equation. SIAM J. Appl. Math., 48, 1510--1526. Math. Review 90a:60183
  9. Hadeler, K. P. (1995) Travelling Fronts in Random Walk Systems. Forma, 10, 223--233. Math. Review 98m:35098
  10. Holmes, E. E. (1993) Are diffusion models too simple? A comparison with telegraph models of invasion. Amer. Naturalist, 142, 779--795.
  11. McKean, H. P. (1975) Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure Appl. Math., 28, 323--331. Math. Review 53 #4262
  12. McKean, H. P. (1976) Correction to the above. Comm. Pure Appl. Math., 29, 553--554. Math. Review 54 #11534
  13. Neveu, J. (1987) Multiplicative martingales for spatial branching processes. Seminar on Stochastic Processes (ed. E. Cinlar, K. L Chung and R. K. Getoor), Progress in Probability and Statistics 15. pp. 223--241. Boston: Birkhauser. Math. Review 91f:60144
  14. Rogers, L. C. G. & Williams, D. (1994) Diffusions, Markov Processes and Martingales, Volume 1: Foundations, 2nd edition. Chichester: Wiley. Math. Review 96h:60116
  15. Seneta, E. (1981) Non-negative Matrices and Markov Chains. Heidelberg, New York: Springer-Verlag. Math. Review 85i:60058

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.