The Laws of Chung and Hirsch for Cauchy's Principal Values Related to Brownian Local Times

Yueyun Hu (Universite Paris VI)


Two Chung-type and Hirsch-type laws are established to describe the liminf asymptotic behaviours of the Cauchy's principal values related to Brownian local times. These results are generalized to a class of Brownian additive functionals.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-16

Publication Date: April 4, 2000

DOI: 10.1214/EJP.v5-66


  • Bertoin, Jean. On the Hilbert transform of the local times of a Lévy process. Bull. Sci. Math. 119 (1995), no. 2, 147--156. MR1324841
  • Bertoin, Jean. Lévy processes. Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996. x+265 pp. ISBN: 0-521-56243-0 MR1406564
  • Bertoin, Jean. Cauchy's principal value of local times of Lévy processes with no negative jumps via continuous branching processes. Electron. J. Probab. 2 (1997), no. 6, 12 pp. (electronic). MR1475864
  • Biane, Ph.; Yor, M. Valeurs principales associées aux temps locaux browniens. (French) [Principal values associated with Brownian local times] Bull. Sci. Math. (2) 111 (1987), no. 1, 23--101. MR0886959
  • Chaumont, L. Excursion normalisée, méandre et pont pour les processus de Lévy stables. (French) [Normalized excursion, meander and bridge for stable Levy processes] Bull. Sci. Math. 121 (1997), no. 5, 377--403. MR1465814
  • Chung, Kai Lai. Excursions in Brownian motion. Ark. Mat. 14 (1976), no. 2, 155--177. MR0467948
  • Csáki, E., Csörgö, M., Földes, A. and Shi, Z.: Increment sizes of the principal value of Brownian local time. Probab. Th. Rel. Fields (to appear)
  • Csáki, E., Csörgö, M., Földes, A. and Shi, Z.: Path properties of Cauchy's principal values related to local time. Studia Sci. Math. Hungar. (to appear)
  • Csáki, E.; Erdős, P.; Révész, P. On the length of the longest excursion. Z. Wahrsch. Verw. Gebiete 68 (1985), no. 3, 365--382. MR0771472
  • Csáki, E., Shi, Z. and Yor, M.: Fractional Brownian motions as ''higher-order" fractional derivatives of Brownian local times. Colloquium on Limit Theorems in Probability and Statistics (Balatonlelle, Hungary, 1999)
  • Csörgő, M.; Révész, P. Strong approximations in probability and statistics. Probability and Mathematical Statistics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. 284 pp. ISBN: 0-12-198540-7 MR0666546
  • Donsker, M. D.; Varadhan, S. R. S. On laws of the iterated logarithm for local times. Comm. Pure Appl. Math. 30 (1977), no. 6, 707--753. MR0461682
  • Erdös, Paul. On the law of the iterated logarithm. Ann. of Math. (2) 43, (1942). 419--436. MR0006630
  • Fitzsimmons, P. J.; Getoor, R. K. On the distribution of the Hilbert transform of the local time of a symmetric Lévy process. Ann. Probab. 20 (1992), no. 3, 1484--1497. MR1175273
  • Fitzsimmons, P. J.; Getoor, R. K. Limit theorems and variation properties for fractional derivatives of the local time of a stable process. Ann. Inst. H. Poincaré Probab. Statist. 28 (1992), no. 2, 311--333. MR1162577
  • Getoor, R. K. First passage times for symmetric stable processes in space. Trans. Amer. Math. Soc. 101 1961 75--90. MR0137148
  • Gruet, J.-C.; Shi, Z. The occupation time of Brownian motion in a ball. J. Theoret. Probab. 9 (1996), no. 2, 429--445. MR1385406
  • Hu, Yueyun; Shi, Zhan. An iterated logarithm law for Cauchy's principal value of Brownian local times. Exponential functionals and principal values related to Brownian motion, 211--228, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 1997. MR1648661
  • Hu, Yueyun; Shi, Zhan. Shortest excursion lengths. Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), no. 1, 103--120. MR1669912
  • Imhof, J.-P. Density factorizations for Brownian motion, meander and the three-dimensional Bessel process, and applications. J. Appl. Probab. 21 (1984), no. 3, 500--510. MR0752015
  • Jeanblanc, M.; Pitman, J.; Yor, M. The Feynman-Kac formula and decomposition of Brownian paths. Mat. Apl. Comput. 16 (1997), no. 1, 27--52. MR1458521
  • Khoshnevisan, Davar; Shi, Zhan. Chung's law for integrated Brownian motion. Trans. Amer. Math. Soc. 350 (1998), no. 10, 4253--4264. MR1443196
  • Kochen, Simon; Stone, Charles. A note on the Borel-Cantelli lemma. Illinois J. Math. 8 1964 248--251. MR0161355
  • Kolmogorov, A.N.: Sulla determinazione empirica delle leggi di probabilita. Giorn. Ist. Ital. Attuari nderbar4 (1933) 1--11.
  • Lamperti, John. An occupation time theorem for a class of stochastic processes. Trans. Amer. Math. Soc. 88 1958 380--387. MR0094863
  • Pitman, Jim; Yor, Marc. A decomposition of Bessel bridges. Z. Wahrsch. Verw. Gebiete 59 (1982), no. 4, 425--457. MR0656509
  • Pitman, Jim; Yor, Marc. Arcsine laws and interval partitions derived from a stable subordinator. Proc. London Math. Soc. (3) 65 (1992), no. 2, 326--356. MR1168191
  • Pitman, Jim; Yor, Marc. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25 (1997), no. 2, 855--900. MR1434129
  • Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1994. xii+560 pp. ISBN: 3-540-57622-3 MR1303781
  • Shiryaev, A. N. Probability. Translated from the first (1980) Russian edition by R. P. Boas. Second edition. Graduate Texts in Mathematics, 95. Springer-Verlag, New York, 1996. xvi+623 pp. ISBN: 0-387-94549-0 MR1368405
  • Shorack, Galen R.; Wellner, Jon A. Empirical processes with applications to statistics. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. xxxviii+938 pp. ISBN: 0-471-86725-X MR0838963
  • Smirnov, N.V.: On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Bull. Math. Univ. Moscou nderbar2 (1939) 3--14. (in Russian)
  • Strassen, V. An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 1964 211--226 (1964). MR0175194
  • Yamada, Toshio. Principal values of Brownian local times and their related topics. Itô's stochastic calculus and probability theory, 413--422, Springer, Tokyo, 1996. MR1439540
  • Yor, Marc. Some aspects of Brownian motion. Part I. Some special functionals. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1992. x+136 pp. ISBN: 3-7643-2807-X MR1193919
  • Exponential functionals and principal values related to Brownian motion. A collection of research papers. Edited by Marc Yor. Biblioteca de la Revista Matemática Iberoamericana. [Library of the Revista Matemática Iberoamericana] Revista Matemática Iberoamericana, Madrid, 1997. x+247 pp. ISBN: 84-600-9461-8 MR1648653

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.