The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. L. V. Ahlfors (1973). Conformal Invariants, Topics in Geometric Function Theory McGraw-Hill Math. Review 50:10211
  2. R. Bass (1995). Probabilistic Techniques in Analysis Springer-Verlag Math. Review 96e:60001
  3. P. Berg and J. McGregor (1966). Elementary Partial Differential Equations Holden-Day Math. Review 34:1652
  4. X. Bressaud, R. Fernandez, A. Galves (1999). Decay of correlations for non-Holderian dynamics: a coupling approach Electron. J. Probab. 4 , paper no. 3
  5. B. Duplantier (1999). Two-dimensional copolymers and exact conformal multifractality, Phys. Rev. Lett. 82, 880--883.
  6. G. F. Lawler (1995). Hausdorff dimension of cut points for Brownian motion, Electron. J. Probab. 1, paper no.2. Math. Review 97g:60111
  7. G. F. Lawler (1996). The dimension of the frontier of planar Brownian motion, Electron. Comm. Prob. 1, paper no 5. Math. Review 97g:60110
  8. G. F. Lawler (1997). The frontier of a Brownian path is multifractal, preprint.
  9. G. F. Lawler (1998). Strict concavity of the intersection exponent for Brownian motion in two and three dimensions, Math. Phys. Electron. J. 4, paper no. 5 Math. Review 2000e:60134
  10. G. F. Lawler, W. Werner (1999). Intersection exponents for planar Brownian motion, Ann. Probab. 27, 1601--1642.
  11. G. F. Lawler, W. Werner (1999). Universality for conformally invariant intersection exponents, preprint.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.