On Stochastic Euler equation in $\mathbb{R}^d$

R. Mikulevicius (Vilnius University)
G. Valiukevicius (Vilnius University)


Following the Arnold-Marsden-Ebin approach, we prove local (global in 2-D) existence and uniqueness of classical (Hölder class) solutions of stochastic Euler equation with random forcing.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 1-20

Publication Date: February 17, 2000

DOI: 10.1214/EJP.v5-62


  1. S. V. Arnold, Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamic des fluides parfaits, Ann. Inst. Grenoble, 16 (1966), 319-361. Math Review link
  2. D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92 (1970), 102-163. Math Review link
  3. D. G. Ebin, A concise presentation of the Euler equation of hydrodynamics, Comm. in Partial Diff. Equations, 9 (1984), 539-559. Math Review link
  4. J. Marsden, Applications of global analysis in mathematical physics, Publish or Perish, (1974). Math Review link
  5. L. Stupelis, Navier-Stokes equations in irregular domains, Kluwer Academic Publishers, Dordrecht, (1995). Math Review link
  6. D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of the second order, Springer Verlag, Berlin, (1983). Math Review link
  7. B. L. Rozovskii, Stochastic Evolution Systems, Kluwer Academic Publishers, Dordrecht, (1990). Math Review link
  8. R. Mikulevicius and G. Valiukevicius, On stochastic Euler equation, Lithuanian Math. J., 38 (1998), 181-192. Math Review link

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.