The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Baxendale P. H. Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Probab. 15 (2005), no. 1B, 700--738. MR2114987 (2005m:60164)
  2. Boucheron S., Bousquet O., Lugosi G., Massart P. Moment inequalities for functions of independent random variables. Ann. Probab 33 (2005), no. 2, 514-560. MR2123200 (2006a:60024)
  3. Bousquet O. A Bennett concentration inequality and its application to suprema of empirical processes. C. R. Math. Acad. Sci. Paris 334 (2002), no. 6, 495--500. MR1890640 (2003f:60039)
  4. Einmahl U., Li D. Characterization of LIL behavior in Banach space. To appear in Trans. Am. Math. Soc.
  5. Giné E., Latała R., Zinn J. Exponential and moment inequalities for U-statistics. In High Dimensional Probability II, 13-38. Progr. Probab. 47. Birkhauser, Boston, Boston, MA, 2000. MR1857312. MR1857312 (2002i:60035)
  6. Glynn P. W., Ormoneit D. Hoeffding's inequality for uniformly ergodic Markov chains. Statist. Probab. Lett. 56 (2002), no. 2, 143--146. MR1881167. MR1881167 (2002k:60143)
  7. Klein T., Rio, E. Concentration around the mean for maxima of empirical processes. Ann. Probab. 33 (2005), no. 3, 1060--1077. MR2135312. MR2135312 (2006c:60022)
  8. Kontorovich L., Ramanan K. Concentration Inequalities for Dependent Random Variables via the Martingale Method. To appear in Ann. Probab.
  9. Kontoyiannis I., Lastras-Montaño L., Meyn S. P. Relative Entropy and Exponential Deviation Bounds for General Markov Chains. 2005 IEEE International Symposium on Information Theory. Math. Review number not available.
  10. Ledoux M. On Talagrand's deviation inequalities for product measures. ESAIM: Probability and Statistics, 1 (1996), 63-87. MR1399224 (97j:60005)
  11. Ledoux M. The concentration of measure phenomenon. Mathematical Surveys and Monographs, 89. American Mathematical Society, Providence, RI, 2001. MR1849347 (2003k:28019)
  12. Ledoux M., Talagrand M. Probability in Banach spaces. Isoperimetry and processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 23. Springer-Verlag, Berlin, 1991. MR1102015 (93c:60001)
  13. Marton K. A measure concentration inequality for contracting Markov chains. Geom. Funct. Anal. 6 (1996), no. 3, 556--571. MR1392329 (97g:60082)
  14. Marton K. Erratum to: "A measure concentration inequality for contracting Markov chains". Geom. Funct. Anal. 6 (1996), no. 3, 556--571. MR1466340 (98h:60096)
  15. Marton, K. Measure concentration for a class of random processes. Probab. Theory Related Fields 110 (1998), no. 3, 427--439. MR1616492 (99g:60074)
  16. Massart, P. About the constants in Talagrand's concentration inequalities for empirical processes. Ann. Probab. 28 (2000), no. 2, 863--884. MR1782276 (2001m:60038)
  17. Mendelson S. Tomczak-Jaegermann N., A subgaussian embedding theorem. Israel J. Math. Vol. 164 (2008). Math Review number not available.
  18. Meyn, S. P., Tweedie, R. L. Markov chains and stochastic stability. Communications and Control Engineering Series. Springer-Verlag London, Ltd., London, 1993. MR1287609 (95j:60103)
  19. Montgomery-Smith S.J. Comparison of sums of independent identically distributed random vectors. Probab. Math. Statist. 14 (1993), no. 2, 281--285. MR1321767 (96b:60042)
  20. Panchenko D. Symmetrization approach to concentration inequalities for empirical processes. Ann. Probab. 31 (2003), no. 4, 2068--2081. MR2016612 (2005c:60023)
  21. Pisier, G. Some applications of the metric entropy condition to harmonic analysis. Banach spaces, harmonic analysis, and probability theory., 123--154, Lecture Notes in Math., 995, Springer, Berlin, 1983. MR0717231 (85f:60061)
  22. Roberts, G. O., Rosenthal, J. S. General state space Markov chains and MCMC algorithms. Probab. Surv. 1 (2004), 20--71. MR2095565 (2005i:60135)
  23. Samson, P.M. Concentration of measure inequalities for Markov chains and $Phi$-mixing processes. Ann. Probab. 28 (2000), no. 1, 416--461. MR1756011 (2001d:60015)
  24. Talagrand M. New concentration inequalities in product spaces. Invent. Math. 126 (1996), no. 3, 505--563. MR1419006 (99b:60030)
  25. van der Vaart, Aad W., Wellner, Jon A. Weak convergence and empirical processes. With applications to statistics. Springer Series in Statistics. Springer-Verlag, New York, 1996. MR1385671 (97g:60035)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.