Rate of growth of a transient cookie random walk

Anne-Laure Basdevant (Université Paris VI)
Arvind Singh (Université Paris VI)


We consider a one-dimensional transient cookie random walk. It is known from a previous paper (BS2008) that a cookie random walk $(X_n)$ has positive or zero speed according to some positive parameter $\alpha >1$ or $\leq 1$. In this article, we give the exact rate of growth of $X_n$ in the zero speed regime, namely: for $0<\alpha<1$, $X_n/n^{(α+1)/2}$ converges in law to a Mittag-Leffler distribution whereas for $\alpha=1$, $X_n(\log n)/n$ converges in probability to some positive constant.

Full Text: Download PDF | View PDF online (requires PDF plugin)

Pages: 811-851

Publication Date: May 7, 2008

DOI: 10.1214/EJP.v13-498


  1. Abramowitz, M.; Stegun, I. A. Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, 55 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1964 xiv+1046 pp. MR0167642
  2. Antal, T.; Redner, S. The excited random walk in one dimension. J. Phys. A 38 (2005), no. 12, 2555--2577. MR2132073
  3. Basdevant, A.-L. ; Singh, A. . On the speed of a cookie random walk. To appear in Probab. Theory Related Fields (2008). Math. Review number not available.
  4. Benjamini, I.; Wilson, D. B. Excited random walk. Electron. Comm. Probab. 8 (2003), 86--92 (electronic). MR1987097
  5. Bingham, N. H.; Goldie, C. M.; Teugels, J. L. Regular variation. Encyclopedia of Mathematics and its Applications, 27. Cambridge University Press, Cambridge, 1989. xx+494 pp. ISBN: 0-521-37943-1 MR1015093
  6. Bowman, F.. Introduction to Bessel functions. Dover Publications Inc., New York 1958 x+135 pp. MR0097539
  7. Dembo, A.; Zeitouni, O.. Large deviations techniques and applications. Second edition. Applications of Mathematics (New York), 38. Springer-Verlag, New York, 1998. xvi+396 pp. ISBN: 0-387-98406-2 MR1619036
  8. Kaverin, S. V. Refinement of limit theorems for critical branching processes with emigration. (Russian) Teor. Veroyatnost. i Primenen. 35 (1990), no. 3, 570--575; translation in Theory Probab. Appl. 35 (1990), no. 3, 574--580 (1991) MR1091216
  9. Kesten, H.; Kozlov, M. V.; Spitzer, F. A limit law for random walk in a random environment. Compositio Math. 30 (1975), 145--168. MR0380998
  10. Lebedev, N. N. Special functions and their applications. Revised edition, translated from the Russian and edited by Richard A. Silverman. Unabridged and corrected republication. Dover Publications, Inc., New York, 1972. xii+308 pp. MR0350075
  11. Mountford, T.; Pimentel, L. P. R.; Valle, G.. On the speed of the one-dimensional excited random walk in the transient regime. ALEA Lat. Am. J. Probab. Math. Stat. 2 (2006), 279--296 (electronic). MR2285733
  12. Norris, J. R. Markov chains. Reprint of 1997 original. Cambridge Series in Statistical and Probabilistic Mathematics, 2. Cambridge University Press, Cambridge, 1998. xvi+237 pp. ISBN: 0-521-48181-3 MR1600720
  13. Vatutin, V. A. A critical Galton-Watson branching process with emigration. (Russian) Teor. Verojatnost. i Primenen. 22 (1977), no. 3, 482--497. MR0461694
  14. Vatutin, V. A.; Zubkov, A. M. Branching processes. II. Probability theory and mathematical statistics, 1. J. Soviet Math. 67 (1993), no. 6, 3407--3485. MR1260986
  15. Vinokurov, G. V. On a critical Galton-Watson branching process with emigration. (Russian) Teor. Veroyatnost. i Primenen. 32 (1987), no. 2, 378--382. MR0902769
  16. Watson, G. N. A treatise on the theory of Bessel functions. Reprint of the second (1944) edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1995. viii+804 pp. ISBN: 0-521-48391-3 MR1349110
  17. Yanev, G. P.; Yanev, N. M. Critical branching processes with random migration. Branching processes (Varna, 1993), 36--46, Lecture Notes in Statist., 99, Springer, New York, 1995. MR1351259
  18. Yanev, G. P.; Yanev, N. M. A critical branching process with stationary-limiting distribution. Stochastic Anal. Appl. 22 (2004), no. 3, 721--738. MR2047275
  19. Zerner, M. Multi-excited random walks on integers. Probab. Theory Related Fields 133 (2005), no. 1, 98--122. MR2197139
  20. Zerner, M. Recurrence and transience of excited random walks on Zd and strips. Electron. Comm. Probab. 11 (2006), 118--128 (electronic). MR2231739

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.