The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

Alternatively, you can also download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link below.

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Download this PDF file Fullscreen Fullscreen Off


  1. Coppersmith, D.; Diaconis, P. Random walk with reinforcement. Unpublished manuscript (1986).
  2. Diaconis, P.; Freedman, D. de Finetti's theorem for Markov chains. Ann. Probab. 8 (1980), no. 1, 115--130. Math. Review 0556418 (81f:60090)
  3. Diaconis, P. Recent progress on de Finetti's notions of exchangeability. Bayesian statistics, 3 (Valencia, 1987), 111--125, Oxford Sci. Publ., Oxford Univ. Press, New York, 1988. Math. Review 1008047 (90h:60035)
  4. Diaconis, P.; Rolles, S. Bayesian analysis for reversible Markov chains. Ann. Statist. 34 (2006), no. 3, 1270--1292. Math. Review 2278358
  5. Keane, M. S.; Rolles, S. Edge-reinforced random walk on finite graphs. Infinite dimensional stochastic analysis (Amsterdam, 1999), 217--234, Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., 52, R. Neth. Acad. Arts Sci., Amsterdam, 2000. Math. Review 1832379 (2002b:60078)
  6. Maurer, S. B. Matrix generalizations of some theorems on trees, cycles and cocycles in graphs. SIAM J. Appl. Math. 30 (1976), no. 1, 143--148. Math. Review 0392635 (52 #13452)
  7. Merkl, F.; Rolles, S. Edge-reinforced random walk on a ladder. Ann. Probab. 33 (2005), no. 6, 2051--2093. Math. Review 2184091 (2006h:60152)
  8. Merkl, F.; Rolles, S. Edge-reinforced random walk on one-dimensional periodic graphs. Accepted for publication in Probab. Theory Related Fields. Preprint available from, (2006).
  9. Merkl, F.; Rolles, S. Linearly edge-reinforced random walks. Dynamics & stochastics, 66--77, IMS Lecture Notes Monogr. Ser., 48, Inst. Math. Statist., Beachwood, OH, 2006. Math. Review 2306189 (2008c:82035)
  10. Merkl, F.; Rolles, S. Asymptotic behavior of edge-reinforced random walks. Ann. Probab. 35 (2007), no. 1, 115--140. Math. Review 2303945 (2008b:60217)
  11. Merkl, F.; Rolles, S. Recurrence of edge-reinforced random walk on a two-dimensional graph. Preprint available from, (2007).
  12. Merkl, F.; Rolles, S. A random environment for linearly edge-reinforced random walks on infinite graphs. Probab. Theory Related Fields 138 (2007), no. 1-2, 157--176. Math. Review 2288067
  13. Pemantle, R.. Phase transition in reinforced random walk and RWRE on trees. Ann. Probab. 16 (1988), no. 3, 1229--1241. Math. Review 0942765 (89g:60220)
  14. Rolles, S. How edge-reinforced random walk arises naturally. Probab. Theory Related Fields 126 (2003), no. 2, 243--260. Math. Review 1990056 (2004c:60276)
  15. Rolles, S. On the recurrence of edge-reinforced random walk on Z x G. Probab. Theory Related Fields 135 (2006), no. 2, 216--264. Math. Review 2218872 (2007b:60246)
  16. Sellke, T. Reinforced random walk on the d-dimensional integer lattice. Technical report 94-26, Purdue University, (1994)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.