Download this PDF file Fullscreen Fullscreen Off

#### References

- R.F. Bass and M. Kassmann. Harnack inequalities for non-local
operators of variable order.
*Trans. Amer. Math. Soc.***357**(2005) 837-850. Math. Review 2005i:60104 - R.F. Bass and D. Khoshnevisan. Local times on curves and uniform
invariance principles.
*Probab. Th. rel. Fields***92**(1992) 465-492. Math. Review 93e:60161 - G. Bennett. Probability inequalities for the sums of
independent random variables.
*J. Amer. Stat. Soc.***57**(1962) 33-45. - A. Dembo, Y. Peres, J. Rosen and O. Zeitouni. Thick
points for planar Brownian motion and the Erdös-Taylor conjecture on
random walk.
*Acta Math.*\**186**(2001) 239-270. Math. Review 2002k:60106 - A. Dembo, Y. Peres, J. Rosen and O. Zeitouni. Cover
time for Brownian motion and random walks in two dimensions.
*Ann. Math.***160**(2004), 433-467. Math. Review 2005k:60261 - A. Dembo, Y. Peres, J. Rosen and O. Zeitouni. Late points
for
random walks in two dimensions.
*Ann. Probab.***34**(2006) 219-263. Math. Review MR2206347 - J.-P. Kahane.
*Some random series of functions: Second Edition.*Cambridge University Press, (1985). Math. Review 87m:60119 - G. Lawler.
*Intersections of random walks.*Birkhäuser, Boston (1991). Math. Review 92f:60122 - G. Lawler. On the covering time of a disc by a random walk
in two dimensions.
*Seminar in Stochastic Processes 1992,*189-208. Birkhäuser, (1993). Math. Review 95c:60064 - G. Lawler and T. Polaski. Harnack inequalities and
differences for random walks with infinite range.
*J. Theor. Probab.***6**(1993), 781-802. Math. Review 94i:60079 - J. Rosen. A random walk proof of the Erdös-Taylor
conjecture.
*Periodica Mathematica Hungarica***50**(2005), 223-245. Math. Review 2006e:60063 - P. Révész.
*Random Walk in Random and Non-Random Environments.*} World Scientific, Singapore (1990). Math. Review 92c:60096 - F. Spitzer.
*Principles of Random Walk*, Van Nostrand, Princeton, New Jersey (1964). Math. Review 30 #1521

This work is licensed under a Creative Commons Attribution 3.0 License.